- 1、本文档共30页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
递归分治动态规划回溯
递归、分治、动态规划与回溯 动态规划算法的基本要素 一、最优子结构 二、重叠子问题 三、备忘录方法 最长公共子序列 若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。 给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。 给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。 最长公共子序列的结构 子问题的递归结构 计算最优值 算法的改进 0-1背包问题 完全加括号的矩阵连乘积 矩阵连乘问题 建立递归关系 计算最优值 用动态规划法求最优解 分析最优解的结构 凸多边形最优三角剖分 三角剖分的结构及其相关问题 最优子结构性质 最优三角剖分的递归结构 多边形游戏 最优子结构性质 电路布线 * * 但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。 动态规划思想 n T(n) = n/2 T(n/4) T(n/4) T(n/4) T(n/4) n/2 T(n/4) T(n/4) T(n/4) T(n/4) n/2 T(n/4) T(n/4) T(n/4) T(n/4) n/2 T(n/4) T(n/4) T(n/4) T(n/4) 如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。 n = n/2 T(n/4) T(n/4) T(n/4) T(n/4) n/2 n/2 T(n/4) T(n/4) n/2 T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n) 动态规划思想 动态规划基本步骤 找出最优解的性质,并刻划其结构特征。 递归地定义最优值。 以自底向上的方式计算出最优值。 根据计算最优值时得到的信息,构造最优解。 矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。 在分析问题的最优子结构性质时,所用的方法具有普遍性:首先假设由问题的最优解导出的子问题的解不是最优的,然后再设法说明在这个假设下可构造出比原问题最优解更好的解,从而导致矛盾。 利用问题的最优子结构性质,以自底向上的方式递归地从子问题的最优解逐步构造出整个问题的最优解。最优子结构是问题能用动态规划算法求解的前提。 注意:同一个问题可以有多种方式刻划它的最优子结构,有些表示方法的求解速度更快(空间占用小,问题的维度低) 递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质。 动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。 通常不同的子问题个数随问题的大小呈多项式增长。因此用动态规划算法只需要多项式时间,从而获得较高的解题效率。 备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 m?0 private static int lookupChain(int i, int j) { if (m[i][j] 0) return m[i][j]; if (i == j) return 0; int u = lookupChain(i+1,j) + p[i-1]*p[i]*p[j]; s[i][j] = i; for (int k = i+1; k j; k++) { int t = lookupChain(i,k) + lookupChain(k+1,j) + p[i-1]*p[k]*p[j]; if (t u) { u = t; s[i][j] = k;} } m[i][j] = u; return u; } 设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则 (1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。 (2)若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。 (3)若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列
文档评论(0)