- 1、本文档共23页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
翻译Speeded-upRobustFeatures
Speeded-Up Robust Features (SURF)
Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool
摘要
这篇文章提出了一种尺度和旋转不变的检测子和描述子,称为SURF(Speeded-Up Robust Features)。SURF在可重复性、鉴别性和鲁棒性方面都接近甚至超过了以往的方案,同时计算和比较的速度更快。
这依赖于使用了积分图进行图像卷积、使用现有的最好的检测子和描述子(特别是,基于Hessian矩阵方法的检测子,和基于分布的描述子)、以及简化这些算法到了极致。这些最终实现了新的检测、描述和匹配过程的结合。
本文包含对检测子和描述子的详细阐述,之后探究了一些关键参数的作用。作为结论,我们用两个目标相反的应用测试了SURF的性能:摄像头校准(图像配准的一个特列)和目标识别。我们的实验验证了SURF在计算机视觉广泛领域的实用性。
引言
在两个图片中找到相似场景或目标的像素点一致性,这是许多计算机视觉应用中的一项任务。图像配准,摄像头校准,目标识别,图像检索只是其中的一部分。
寻找离散像素点一致性的任务可以分为三步。第一,选出兴趣点并分别标注在图像上,例如拐角、斑块和T型连接处。兴趣点检测子最有价值的特性是可重复性。可重复性表明的是检测子在不同视觉条件下找到相同真实兴趣点的能力。然后,用特征向量描述兴趣点的邻域。这个描述子应该有鉴别性,同时对噪声、位移、几何和光照变换具有鲁棒性。最后,在不同的图片之间匹配特征向量。这种匹配基于向量间的马氏或者欧氏距离。描述子的维度对于计算时间有直接影响,对于快速兴趣点匹配,较小的维度是较好的。然而,较小的特征向量维度也使得鉴别度低于高维特征向量。
我们的目标是开发新的检测子和描述子,相对于现有方案来说,计算速度更快,同时又不牺牲性能。为了达成这一目标,我们必须在二者之间达到一个平衡,在保持精确性的前提下简化检测方案,在保持足够鉴别度的前提下减少描述子的大小。
相关文献(e.g[21,24,27,37,39,25])已经提出了大量的检测子和描述子。同时,基于基准数据库的详细的对于和评估也已经进行过[28,30,31]。我们的快速检测子和描述子在[4]中介绍过,被称为SURF(Speeded-Up Robust Features)。它建立在前人的成就上。在我们对基准数据库的实验上,SURF检测子和描述子不止更快,而且可重复性更好,同时鉴别力更高。
我们关注于尺度和平面内旋转不变的检测子和描述子。对于常见的光学畸变,这似乎在特征复杂性和鲁棒性之间达到了妥协。倾斜,各向异质性,缩放和透视效应被认为是次要影响,在一定程度上可以被描述子的鲁棒性修复。注意到使用椭圆放射正规化,描述子可以扩展到放射不变区域(cf.[31]),虽然这将会影响到计算时间。另一方面,检测子的扩展并不那么直观。我们假定一个简单的线性模型,带有偏置(偏移)和反向变化(尺度因子)。检测子和描述子都没有使用颜色信息。
在第三部分描述了用于快速鲁棒兴趣点检测的策略。对输入图像在不同尺度上进行了分析,以确保尺度不变形。检测到的兴趣点在第四部分用旋转和尺度不变描述子进行了表述。此外,还提出了一种基于兴趣点和邻域对比的简单高效的首行索引技巧。
第五部分讨论了可用参数及其影响,包括垂直版本(非旋转不变)的优点。我们同样研究了SURF在两种重要应用场景中的表现。首先,我们考虑了一种特殊的图像配准场景,称为3D重建中的摄像头校准。然后,我们试验了SURF在目标识别中的应用。相对于其他方法,这两个应用都突出了SURF的速度和鲁棒性。第六部分是一个总结。
相关工作
2.1 兴趣点检测
最常用的检测子是1988年提出的基于二阶矩矩阵的Harris角点检测子[15]。然而,Harris角点不是尺度不变的。Lindeberg[21]介绍了自动尺度选择的概念,可以根据兴趣点的特征尺寸检测兴趣点。他用Hessian矩阵和Laplacian矩阵的秩(以及Hessian的迹)检测类似斑块的结构。Mikolajczyk and Schmid[26]提炼了这种方法,创造了鲁棒性好,尺度不变,高重复性的特征检测子,称为Harris-Laplace和Hessian-Laplace。他们使用(适应尺度的)Harris方法或者Hessian矩阵行列式来选择位置,使用Laplacian选择尺度。为了提高速度,Lowe[23]提出了用Difference of Gaussians (LoG)来近似Difference of Gaussians (DoG)的方法。
此外还有其他尺度不变检测子,例如Kadir and Brady[17]提出的显著区域检测子,这种检测子将一个区域内的熵最大化,另外还
您可能关注的文档
- 经典重点原文背诵.doc
- 经济学视野下不堪重负的城市交通.docx
- 经济学选判练习14带答案.docx
- 经济师中级考试人力资源专业知识点汇集.doc
- 经济师人力资源测试卷.doc
- 经济政治与社会电子教案(第1课商品).doc
- 经济生活判断题.doc
- 经济类试题及答案.doc
- 结构化学第四章练习题.doc
- 绝缘油交接试验作业指导书bdtssy-07.doc
- 医院新建核医学工作场所项目环评资料环境影响.docx
- 食品工业扩建1.2T蒸汽发生器项目环评资料环境影响.docx
- 塑胶制品迁建年产5000万件新能源汽车配套柔性配件项目环评资料环境影响.docx
- 年产2000吨天然酯绝缘油产品生产项目环评资料环境影响.docx
- 中辐放射性药物贮存及销售项目环评资料环境影响.docx
- 年产2.25万吨环氧组合料及500吨配套单体项目环评资料环境影响.docx
- 电子外壳专业部生产能力建设项目环评资料环境影响.docx
- 热源厂池式蓄热储能示范项目环评资料环境影响.docx
- 高性能纤维增强聚氨酯复合材料型材研发及产业化项目环评资料环境影响.docx
- 机箱机柜精密钣金件技改项目环评资料环境影响.docx
最近下载
- 翼状胬肉的护理查房-PPT.ppt
- 2022年应急管理工作应知应会知识竞赛题库(含答案).pdf
- 全民微信时代增进了VS减弱了人与人之间的交流辩论赛 正方辩词一辩、二辩、三辩、四辩发言稿.docx
- 超星网课尔雅《人人学点营销学》尔雅答案2022章节测试答案.docx
- 2019CSP-J NOIP普及组初赛C++试卷.pdf VIP
- 2024年《城镇燃气管理条例题库》考试题库(含答案).pdf VIP
- 必威体育精装版浙教版八年级上册劳动技术 项目三 任务二《打蛋器的制作》课件(课件).pptx
- 纪律意识方面存在不足及措施4篇.pdf
- 消防安全教育PPT课件.pptx VIP
- 《新中国成立75周年》全文课件.ppt VIP
文档评论(0)