基于贝叶斯估计的小波图像降噪精要.docx

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于贝叶斯估计的小波图像降噪精要

基于贝叶斯估计的小波图像降噪刘玉振 仪科3班一、二维多分辨率分析二维多分辨率分析与一维类似,二维多分辨率分析的尺度函数为,其中和是一维中的尺度函数。设是对应的一维小波函数,则有、、、都是二维多分辨率分析的小波函数。由于、、都至少包含一个带通的和,所以它们都是带通的,反映的是细节信息。分别用小波函数、、、对二维离散信号进行小波变换,可以将它分解为各层各个分辨率上的近似分量cAj,水平方向细节分量cHj,垂直方向细节分量cVj,对角方向细节分量cDj,其二层小波图像分解过程如图1.1所示。图1.1二维小波图像分解过程假设二维离散信号X(512,512),对其用二维离散小波进行小波变换,得到的小波系数如图所示,A、H、V、D都是系数矩阵。A2、H2、V2、D2的尺寸为128*128,H1、V1、D1的尺寸为256*256。如果进行三层分解,则A3、H3、V3、D3的尺寸为64*64,H2、V2、D2的尺寸还是128*128,H1、V1、D1的尺寸还是256*256。图1.2二维小波重构图像过程二层小波重构过程正好相反,基于小波变换的图像处理,是通过对图像分解过程中所产生的近似分量和细节分量系数的调整,使重构图像满足特定条件,实现图像处理,具体过程如图1.2所示。二、小波图像降噪在获取和传输图像的过程中,不可避免地会混有噪声,所以在处理和传输时,就必须对图像进行去噪处理,以提高图像的质量。由于小波变换具有良好的局部特性,因此作为一种信号和图像处理的工具得到了广泛应用。图像去噪的一般方法是:1、图像的小波分解。选择合适的小波函数以及适合的分解层数对图像进行分解。2、对分解后的高频系数进行阈值处理。对分解的每一层,选择合适的阈值对该层的水平、垂直和斜线三个方向的高频系数进行阈值量化处理。3、重构图像。根据小波分解的低频系数和经阈值量化处理后的高频系数进行图像重构。三、基于Bayes估计的小波去噪3.1Bayes估计小波阈值1995年,Donoho首次提出了小波阈值的概念。小波阈值是一种非线性的方法,它是在小波域内通过对小波系数进行处理来达到去除噪声的目的。其理论前提是,认为图像的小波系数是服从广义高斯分布的,且绝对幅值较大的小波系数主要是由原始信号变换后得到的,而绝对幅值较小的小波系数则主要是由噪声变换后得到的,这样就可以通过设定阈值将较小的噪声系数去除来达到去除噪声的目的。阈值处理有软阈值函数(soft threshold)和硬阈值函数(hard threshold)两种[2],其中,软阈值函数(也称作收缩shrink函数)为其中,x是小波系数,T是阈值,软阈值函数是先让小波系数x和T进行比较,然后根据比较结果,让x向0收缩。硬阈值函数为其中,x是小波系数,T是阈值,硬阈值函数是使绝对幅值大于T的小波系数保留,其他系数则为0。软阈值和硬阈值处理的区别,这里选择软阈值方法。小波系数经过阈值处理后,由小波逆变换得到重建图像。通过阈值来进行去噪,最佳阈值T大小的确定是一个关键的问题。Chang[1]等人根据图像小波系数分布的特点,提出了一种基于Bayes准则的图像去噪方法——Bayes shrink去噪法,其最佳阈值T为其中,是噪声信号方差的估计,是图像信号方差的估计。假设图像表示为,其中表示图像在处的灰度值。因此,含有噪声的图像就可以表示成其中,噪声,属于正态分布,与图像信号相互独立。经过小波变换后,有其中,表示含有噪声图像的小波系数,表示原始图像的小波系数,表示噪声的小波系数。根据Chang提出的方法,噪声信号小波系数的方差估计可以由下式得到其中,s表示不同方向上的小波系数,表示水平方向上的小波系数,表示垂直方向上的小波系数,表示对角方向上的小波系数;C为常数,取0.6745;,N表示小波分解的层数。由于服从高斯分布,所以混合信号Z的小波系数的方差由,可得到原始信号小波系数方差的估计这样就得到Bayes shrink的阈值表达式3.2Bayes估计小波系数采用无偏最小方差估计准则对不同尺度空间和不同方向上信号的小波系数进行自适应估计,以后验概率的平均值作为小波系数的估计,然后对小波系数进行小波逆变换得到去噪后的图像。对于一个被噪声污染的信号Z=X+n。当信号X无法直接测量时,通常采用估计法根据观察值Z对信号X进行估计,无偏最小方差估计是一种最优的Bayes估计准则,它同时满足无偏和估计方差最小两个条件。根据贝叶斯法则,满足无偏最小方差的最优估计为后验概率(条件概率)的均值[4]。因此,要求解就必须知道噪声的概率密度函数和原始信号的概率密度函数。由概率论的知识可知,两个服从高斯分布的信号叠加后,其分布依然近似服从高斯分布,且高斯分布的均值对应概率分布曲线的最大值处的自变量值,由高等数学知识可知,通过令概率分布密度函数的一阶微分为0,可以求得

您可能关注的文档

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档