多元回归分析matlab精要.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
多元回归分析matlab精要

回归分析MATLAB工具箱 一、多元线性回归 多元线性回归: 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b表示 ②Y表示 ③X表示 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint表示回归系数的区间估计. ②r表示残差. ③rint表示置信区间. ④stats表示用于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对应的概率p. 说明:相关系数越接近1,说明回归方程越显著;时拒绝,F越大,说明回归方程越显著;与F对应的概率p时拒绝H0,回归模型成立. ⑤alpha表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据. x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]; X=[ones(16,1) x]; Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]; (2)回归分析及检验. [b,bint,r,rint,stats]=regress(Y,X) b,bint,stats 得结果:b = bint = -16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats = 0.9282 180.9531 0.0000 即;的置信区间为[-33.7017,1.5612], 的置信区间为[0.6047,0.834]; r2=0.9282, F=180.9531, p=0.0000p0.05就符合条件, 可知回归模型 y=-16.073+0.7194x成立. 3)残差分析,作残差图rcoplot(r,rint) 从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第二个数据可视为异常点. 4)预测及作图z=b(1)+b(2)*x plot(x,Y,k+,x,z,r) 二、多项式回归 (一)一元多项式回归 1、一元多项式回归 (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m) x=(x1,x2,…,xn),y=(y1,y2,…,yn);p=(a1,a2,…,am+1)是多项式y=a1xm+a2xm-1+…+amx+am+1的系数;S是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计(1)Y=polyval(p,x)求polyfit所得的回归多项式在x处的预测值Y; (2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit所得的回归多项式在x处的预测值Y及预测值的显著性为1-alpha的置信区间Y±DELTA;alpha缺省时为0.5. 例观测物体降落的距离s与时间t的关系,得到数据如下表,求s关于t的回归方程t (s) 1/30 2/30 3/30 4/30 5/30 6/30 7/30 s (cm) 11.86 15.67 20.60 26.69 33.71 41.93 51.13 t (s) 8/30 9/30 10/30 11/30 12/30 13/30 14/30 s (cm) 61.49 72.90 85.44 99.08 113.77 129.54 146.48 解:直接作二次多项式回归t=1/30:1/30:14/30; s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为: 解:化为多元线性回归t=1/30:1/30:14/30; s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t (t.^2)]; [b,bint,r,rint,stats]=regress(s,T);

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档