网站大量收购闲置独家精品文档,联系QQ:2885784924

SiC外延行业动态范例.docx

  1. 1、本文档共26页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
SiC同质外延行业动态 一、 行业概述 半导体技术与人们的生活息息相关,它在提高人们生活水平的同时,深刻地影响了当代人的方方面面。作为半导体技术的一个重要分支,半导体材料对半导体技术的发展有着举足轻重的作用,它的每一次发展都会推动半导体器件和集成电路性能的较大进步。为了进一步提高半导体技术,我们需要坚持不懈地研究半导体材料。 现在,使用半导体材料 Si、Ge 制造器件的技术比较成熟,应用的范围相当广泛。然而,随着电路系统工作环境的复杂化,我们对电子器件的性能要求也更加严格,硅材料已不能满足要求。所以第二代半导体材料 GaAs 等应运而生,在一定程度范围满足了现代技术应用的要求。在此之后,又研究出第三代宽带隙(Eg2.3eV)半导体材料。第三代半导体材料凭借其优越的综合性能脱颖而出,其中具有代表性的是 SiC 和 GaN。 Si 器件作为当今世界的主流,日益表现出局限性,其带隙宽度较小,高温下不能正常工作,在高温、高频、大功率及强辐射条件下性能捉襟见肘。Si器件的最高耐温只有 150℃,而 SiC 器件的耐温可达 600℃,而且热导率高,有利于器件良好地散热,使器件发挥更好的性能,由于散热良好,器件和集成电路的体积可以做的更小。SiC 器件和 Si器件相比,耐压范围也更高,如图 1.1 所示。第三代半导体材料的性质见表 1.1,所以在耐腐蚀等环境下,有着巨大的应用价值。电力电子领域是 SiC 材料应用的典型领域。 图 1.1 Si 和 SiC 器件耐压值范围 在航空航天或军事领域,系统的工作条件极其恶劣。从 80 年代末起,SiC 材料与器件的飞速发展。由于 SiC 材料种类很多,性质各异,它的应用范围十分广泛。 在大功率器件方面,利用 SiC 材料可以制作的器件,其电流特性、电压特性、和高频特性等具有比 Si材料更好的性质。 在高频器件方面,SiC 高频器件输出功率更高,且耐高温和耐辐射辐射特性更好,可用于通信电子系统等。 在光电器件方面,利用 SiC 不影响红外辐射的性质,可将其用在紫外探测器上,在 350℃的温度检测红外背景下的紫外信号,功率利用率 80%左右。 在耐辐射方面,一些 SiC 器件辐射环境恶劣的条件下使用如核反应堆中应用。 高温应用方面,利用 SiC 材料制备的器件工作温度相当地高,如 SiC MOSFET和 SiC 肖特基二极管可在 900k 下工作。 从世界范围来看,高功率器件是最有可能实现的,应用潜力也最大,如图 1.2所示。SiC 作为二元化合物半导体,属于Ⅳ族元素中唯一的固态化合物。它 Si-C 健的能量很稳定,这也是 SiC 在各种极端环境下仍能稳定的原因。SiC 的原子化学能高达 1250KJ/mol;德拜温度达到 1200-1430K,摩尔硬度达到 9 级,仅比金刚石摩尔硬度低些;导热性良好,达 5W/cm.K,比其他半导体材料好很多。 SiC 有多种同质多型体,不同的同质多型体有不同的应用范围。典型的有3C-SiC、4H-SiC 和 6H-SiC,它们各有不同的应用范围。其中,3C-SiC 是唯一具有闪锌矿结构的同质多型体,其电子迁移率最高,再加上有高热导率和高临界击穿电场,非常适合于制造高温大功率的高速器件;6H-SiC 具有宽的带隙,在高温电子、光电子和抗辐射电子等方面有使用价值,使用6H-SiC 制造的高频大功率器件,工作温度高,功率密度有极大的提升;而 4H-SiC 具有比 6H-SiC 更宽的带隙和较高的电子迁移率,是大功率器件材料的最优选择。 由于 SiC 器件在国防和民用领域不可替代的地位,世界上很多国家对 SiC 半导体材料和器件的研究都很重视。美国的国防宽禁带半导体计划、欧洲的ESCAPEE计划和日本的国家硬电子计划等,纷纷对 SiC 半导体材料晶体制备和外延及器件投入巨资进行研究。 SiC 电子器件是微电子器件领域的研究热点之一。SiC 材料的击穿电场有4MV/cm,很适合于制造高压功率器件的有源层。而由于 SiC 衬底存在缺陷等原因,将它直接用于器件制造时,性能不好。SiC 衬底经过外延之后,其表面缺陷减少,晶格排列整齐,表面形貌良好,比衬底大为改观,此时将其用于制造器件可以提高器件的性能。为了提高击穿电压,厚的外延层、好的表面形貌和较低的掺杂浓度是必需的。 一些高压双极性器件,需外延膜的厚度超过 50μm,掺杂浓度小于 2×1015cm-3,载流子寿命大过 1us。对于高反压大功率器件,需要要在 4H-SiC 衬底上外延一层很厚的、低掺杂浓度的外延层。为了制作 10KW 的大功率器件,外延层厚度要达到 100μm以上。高压、大电流、高可靠性 SiC 电子器件的不断发展对 SiC 外延薄膜提出了更多苛刻的要求,需要通过进一步深入的研究提高厚外延生长技术。 电子迁移率με

文档评论(0)

希望之星 + 关注
实名认证
内容提供者

我是一名原创力文库的爱好者!从事自由职业!

1亿VIP精品文档

相关文档