- 1、本文档共23页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Lecture 6 Windowing of DFT.ppt
Fall 2008 * Lecture 6: Windowing of DFT Instructor: Dr. Gleb V. Tcheslavski Contact: gleb@ Office Hours: Room 2030 Class web site: /gleb/dsp/index.htm by Steve Higgins The idea of windowing (6.2.1) - not really practical What if we observe an infinitely long sequence over a finite length time window? 0 D-1 Than we don’t see the rest of the signal. Let D is the number of samples (data points) observed. Windowing; what it causes (6.3.1) where: (6.3.2) yn is a D- sequence (finite length), therefore, we can evaluate its DFT. periodic convolution property Therefore, is a “dispersed/convoluted/obscured view of (6.3.3) - a windowed view of xn zero-padded length (6.3.4) Windowing; what it causes (cont) (6.4.1) If ?0 ? [-?, ?] (6.4.2) (6.4.3) (6.4.4) delay due to a center of the window Leakage Let D = 100 (6.5.1) (6.5.2) Spectrum of a rectangular window This is what causes so called “leakage” – observation of frequency components that do not exist in the spectrum of the signal – Due to observation only! Frequency sampling DFT means “frequency sampling”! We can only observe specific frequency components of the sinc curve, and, therefore, can see only the specific frequency components of our signal! Zero-padding increases number of observed frequency samples. BUT! our sinusoid leaves at ?0 and this is the only frequency where we expect it to be! Therefore, by “smart” choice of P we can observe the signal ONLY at ?0 and at the zero-crossings, i.e. at (6.5.1) Characteristics of window functions Main lobe width (MLW) at xx dB Windows characteristics Peak Side Lobe level (PSL), dB Side Lobe Roll-off (SLR), dB/octave Characteristics of window functions Windows characteristics We want: MLW – narrow for better spectral resolution PSL – lower to have less masking for nearby components SLR – “better” (faster) to have less masking for far away components Multiple sinusoids (6.9.1) Assume for simplicity that ?m = 0 for every m. As a consequenc
文档评论(0)