- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数据挖掘案例201404-10
成功案例:1,Credilogros改善客户信用评分业务(直接数据挖掘,预测统计分析方法/软件)Credilogros是阿根廷第五大信贷公司,它需要识别与潜在预先付款客户(缺乏充分的信用记录数据)相关的潜在风险,以便将承担的风险最小化。Credilogros选择了SPSS Inc.的数据挖掘软件PASWModeler,因为它能够灵活并轻松地整合到 Credilogros 的核心信息系统中。数据挖掘的收益包括:处理信用数据和提供最终信用评分的时间缩短到了8秒以内。平均每月使用PASW Modeler处理35000份申请。这使该组织能够迅速批准或拒绝信贷请求。最小化每个客户必须提供的身份证明文档,某些情况,只需一份身份证明即可批准信贷;风险监控,仅在实施3 个月后就帮助Credilogros 将贷款支付失职减少了20%。2,中国宝钢集团(直接数据挖掘,分类分析方法)宝钢自1985年投产至今,积累了大量的生产数据,从每一炉钢到每一块板坯到每一个钢圈,各级计算机系统可以把这些数据完整地收集起来。采用数据挖掘技术对钢材生产的全流程进行质量监控和分析(通过全流程实时监控获得了丰富的生产数据),构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。宝钢采用了两个数据挖掘工具,一个是自行研发的基于SAS的practical Miner,另一个是美国SAS公司的Enterprise Miner。在冷轧和热轧的产品质量控制中,仅2001年就取得超过3000万元的经济效益。在配矿优化项目中,通过确定不同铁矿石的合理比例,每年可为宝钢降低成本6000万元。另外,通过分析轧制计划,分析和优化库存结构,降低库存成本和平衡物流成本。3,DHL实时跟踪货箱温度DHL每辆车都装有持续记录车速、时间及温度的特制“黑匣子”,拥有全球定位系统,并由随车安保人员实时监控。一旦有偏离路线、超时停车和车内温度异常情况,货车必须重新装货。基于“黑匣子”提供的大量数据进行数据挖掘,可以根据温度控制的目标,制定和优化行车线路、司机配置、提供车况评估等决策支持。4,沃尔玛超市里的尿布与啤酒(间接数据挖掘,关联规则)在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在尿布与啤酒背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。5,民生银行“高端客户流失风险预测研究”项目在客户关系管理中,“老客户的保留”是十分重要的研究领域。已经发生流失的客户还有较高的挽回余地,若银行能在客户刚刚产生流失意向时就准确识别出他们,并辅以适当的客户关怀策略,这些客户应具有更高的可能性被挽留。项目研究首先明确一个标准化、规范化的商业银行数据挖掘流程框架,结合相应的数据准备、字段筛选、模型选择等问题,逐步建立客户流失分类预测的映射关系、客户按流失可能性从高到低排序、从客户特征中挖掘出客户将发生流失的规律、实现客户挽留策略的个性化定制和资源的差异化配置、将分类预测模型及相关结果部署于现有管理信息系统中。6,中国银联股份有限公司“异常交易检测方法”2006年网上支付在我国所有的电子支付交易中占比96%,而且会越来越普及。另一方面,网上支付的便利性和信用卡用户的不断增加也为犯罪分子进行金融欺诈等犯罪提供了更多的机会。这需要银行等金融机构采取一定的措施来予以控制。这里异常交易被定义为,满足系统对于正常交易的规定,但本质具有一定的欺诈特性,比如攻击者利用盗取的合法用户信息进行的交易,或者合法用户进行的恶意透支行为等。提出一种基于数据挖掘的异常交易检测方法,可以在业务层面和操作层面对交易中的异常进行检测。当一个用户提交一笔新的消费交易时,采用贝叶斯信念网络算法判断当前交易属于正常交易的后验概率,作为在业务层面的可信因子;然后提取该用户在当前交易之前的若干个操作,与当前交易一起构成一个固定长度的操作序列,并通过BLAST-SSAHA算法将其与该用户正常操作序列和已知异常操作序列进行比对,得出在操作层面的可信因子。综合考虑业务层面的可信因子和操作层面的可信因子,最终决定当前交易是否为异常交易。7
您可能关注的文档
- 庞图案艺术思想简论.doc
- 康复神经组题目.docx
- 建材市场招商技巧.doc
- 建筑业是国民经济的支柱产业.doc
- 建筑企业安全生产应急管理存在的问题与对策.doc
- 建筑内部装修防火规范KTV要求.doc
- 建筑公司质量管理体系运行状况总结及改进措施.doc
- 康复治疗专业运动疗法测试.doc
- 建筑初学者导师房建技巧教程.docx
- 建筑工程一般签证项目.doc
- 第2章神经调节教学设计-2024-2025学年高二上学期生物人教版选择性必修1.docx
- Unit 3 Are you Su Hai?(教学设计)-2024-2025学年译林版(三起)(2024)英语三年级上册.docx
- Unit 4 Inventions Period 1 Reading教学设计2024-2025学年沪教牛津版(广州沈阳通用)八年级英语上册.docx
- Unit 2 Section A 1a-1c 教案 2024-2025学年人教版八年级英语上册.docx
- 湘科版(2017秋) 四年级下册5.1 点亮小灯泡 教学设计.docx
- 支撑跳跃(教案)通用版体育六年级下册.docx
- 浙摄版信息技术六下第8课《机器人快递员》教案.docx
- Unit 2 Looking into the future Assessing Your Progress 教学设计-2024-2025学年高二英语人教版(2019)选择性必修第一册.docx
- Unit 2 We’re Family! Section B Period VI Project教学设计2024-2025学年人教版(2024)七年级英语上册.docx
- 第五课《有人脸的器物》教学设计.docx
文档评论(0)