数据预测统计分析产品IBMSPSSStatistics实例应用讲解.docxVIP

数据预测统计分析产品IBMSPSSStatistics实例应用讲解.docx

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数据预测统计分析产品IBMSPSSStatistics实例应用讲解

IBM SPSS Statistics 是目前世界上主流的数据预测统计分析软件之一,本文从 IBM SPSS Statistics 的基本概念入手,对其在数据分析流程中的各个应用进行了简单介绍,通过针对一个实际问题的分析,并结合典型算法,介绍使用 IBM SPSS Statistics 进行数据分析的基本流程。读者可以在较短时间内了解如何使用 IBM SPSS Statistics 进行建模及数据预测分析。IBM SPSS Statistics 简介及基本概念介绍SPSS Statistics 统计分析预测软件是一款在调查统计行业,市场研究,医学统计,政府和企业的数据分析应用中久享盛名的统计分析工具,是世界上最早的统计分析软件,全球约有 28 万家产品用户,他们分布于通讯,医疗,银行,证券,保险,制造,商业,市场研究,科研教育等多个领域和行业,是目前世界上应用最广泛的专业数据预测统计分析软件。在 2009 年 IBM 收购 SPSS 公司之后,IBM SPSS Statistics 成为 IBM 商业智能分析优化解决方案的重要组成部分,必威体育精装版的发布版本是 19.0 多国语言版。基本概念典型的 IBM SPSS Statistics 数据编辑器界面如下:图 1 IBM SPSS Statistics 数据编辑器界面变量视图:变量视图用于管理变量的属性,包括变量名称,类型,标签,缺失值,度量标准等 10 个属性。数据视图:数据视图用于管理录入的数据,一行表示一条记录在不同变量下的值,一列表示相同的变量在不同记录中的值。图 2 变量类型定义界面变量类型:IBM SPSS Statistics 主要包括 3 种类型,分别是:数值型,字符型和日期型,根据不同的显示方式,数值型又被细分为 6 种,为了便于统计计算,通常尽可能将变量类型定义为数值型的。度量标准:在 IBM SPSS Statistics 中,按照对事物描述的精确程度,可以将变量分为 3 种度量标准,度量(Scale),名义(Nominal),序号(Ordinal),因为不同的变量度量标准适用不同的统计模型,因此正确定义一个变量的度量标准很重要。度量(Scale)变量:通常也称为连续变量,表示变量的值通常是连续的,无界限的,如员工收入,企业销售额等。名义(Nominal)变量:通常也称为无序分类变量,表示变量的值是离散的,相对有限个数的,通常变量值的个数不超过 10 个,但值之间没有顺序关系的,如性别。序号(Ordinal)变量:通常也称为有序分类变量,表示变量的值是离散的,相对有限个数的,但值之间是有顺序关系的,如教育水平取值有:1 — 8 年,2 — 10 年,3 — 15 年,这些值之间存在顺序大小关系。图 3 变量值标签定义界面变量值标签:在 IBM SPSS Statistics 中,可以对分类变量进一步说明每一个值的具体意义或者标签值,然后在数据视图中,可以通过菜单:视图 - 值标签,来切换显示变量的值,或者值的具体标签意义。图 4 缺失值定义界面缺失值:在一个大型调查中,可能有一些选项为不知道或者拒答,这就需要把这个值定义为缺失值,或者一些数据录入时发生丢失,就默认定义为系统缺失值。数据分析方法论介绍任何一个数据分析预测项目,按照整个分析过程的结构来看,都可以大致分解成 7 个阶段:计划阶段,数据收集,数据获取,数据准备,数据分析,结果报告,和模型发布预测阶段。计划阶段在该阶段需要弄清楚以下几个问题,以减少盲目的分析避免资源浪费:确定研究问题建立项目预算确定研究范围及确定研究总体和个体确定样本的抽取方法分析评估所需样本量确定数据的收集方式确定与研究问题相关的数据确定研究问题的分析方法和分析工具数据收集阶段如果已有现成数据则可以不必再进行数据收集,数据收集的方式有很多种,可以是电话访问,可以是面谈收集,也可以是拦截式访问,如果是从头进行数据收集,需要有一份标准的问卷,问题设计不仅要相关,还要能够从中得出有意义的结论。数据获取阶段该阶段的目的是将分散的,原始格式不同的数据读入分析工具中,使分析工具可以对数据进行分析。数据准备阶段该阶段的主要任务是:清理数据以保证数据的准确性对数据进行必要的转换,如生成新变量,将连续变量离散化,将字符变量数值化等填充缺失数据对数据进行合并,汇总等数据分析阶段利用各种数据分析方法对数据进行分析,得出结论,该阶段又可分为:预分析:包括概括性统计描述和探索性统计描述推断两部分,前者是使用统计图和统计表对数据进行更好的理解,而后者则基于对数据的理解开始尝试进行分析,以寻找最终分析模型的雏形。精确分析:基于上一步得到的各种信息,开始尝试拟合最佳的统计模型,以寻求对数据中所蕴含信息的最合理解释。结果报告阶段结果报告的目的是将整个数据分析项目的结果以

文档评论(0)

2017ll + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档