- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
哈工大金属学与热处理原理初试经典试题
哈工大金属学与热处理原理初试经典试题? ??
第三章
什么是成分过冷?画图说明成分过冷是如何形成的?(以固相中无扩散,液相中只有扩散而无对流搅拌的情况为例说明)并说明成分过冷对晶体长大方式及铸锭组织的影响。
?? 成分过冷:实质是液相成分变化引起过冷状况发生变化。? 异分结晶必然导致溶质在液、固相中的浓度变化,而固溶体的平衡结晶温度则随合金成分的不同而变化,
进而引起过冷状况变化。??? 自己把图画上(共五个)? ??
假设液态金属中仅扩散,即扩散不能充分进行。? 由图(a)结晶的固相成分总是低于平衡成分Co?,故将溶质排到界面前沿,由于不能充分扩散,便在界面处产生溶质浓度梯度薄层。结合图(c)(d),固溶体平衡结晶温度随溶质浓度的变化而变化。将实际温度分布
(b)与平衡结晶温度分布(e)叠加,便在固液界面前一定范围的液相中出现了过冷区域。平衡结晶温度与实际结晶温度之差为过冷度,这个过冷度是由于液相中成分变化引起的,
故称为成分过冷。?
成分过冷对晶体长大方式的影响:? 随着成分过冷的增大,固溶体晶体由平面状向胞状、树枝状的形态发展
成分过冷对铸锭组织的影响:?固溶体合金的铸锭组织也是由表层细晶区、柱状晶区、中心等轴晶区组成。当溶质含量固定时,随着G的增加成分过冷区下降,铸锭组织由等轴晶向柱状晶发展;当G固定时,随着浓度的增加,成分过冷区增大,铸锭组织由柱状晶向等轴晶过度,有利于等轴晶形成。?? (注:液相中的?温度梯度G越小?,成长速度R和溶质的浓度Co越大,则有利于形成成分过冷。)???
第四章
试述铁碳合金平衡组织中铁素体和渗碳体的形态、特征和数量对合金组织和性能的影响。?
从奥氏体中析出的铁素体一般呈块状,而经共析反应生成的珠光体中的铁素体,由于同渗碳体要相互制约,呈交替层片状。而渗碳体由于生成的条件不同,使其形态变得十分复杂。当w(C)=0.0218%时,三次渗碳体从铁素体中析出,沿晶界呈小片状分布。共析渗碳体是经共析反应生成的,与铁素体呈交替层片状,而从奥氏体中析出的二次渗碳体,则以网络状分布于奥氏体的晶界。共晶渗碳体是与奥氏体相关形成的,在莱氏体中为连续的基体,比较粗大,有时呈鱼骨状。一次渗碳体是从液相中直接形成的,呈规则的长条状。随含碳量的增加,铁碳合金的组织变化顺序为? ?
铁素体是软韧相,渗碳体是强硬相。随含碳量增加,渗碳体逐渐增多,铁素体逐渐减少,合金硬度升高,塑性、韧性下降;强度先上升,当w(C)=1%时强度达到最大值,之后随含碳量增加,强度逐渐减小,这是因为w(C)1%时,脆性的二次渗碳体于晶界形成连续的网络,使钢的脆性大大增加。进行拉伸试验时容易沿二次渗碳体处产生早期裂纹并发展至断裂,使强度下降。?
因此,为了保证工业上使用的铁碳合金具有适当的塑性和韧性,合金中渗碳体相的数量不应过多。? ??
第六章
多晶体塑性变形特点??
1、不同时性:只有处在有利位向(取向因子最大)的晶粒的滑移系才能首先开动?
2、不均匀性:每个晶粒的变形量各不相同,而且由于晶界的强度高于晶内,使得每一个晶粒内部的变形也是不均匀的。?
3、协调性:多晶体的塑性变形是通过各晶粒的多系滑移来保证相互协调性。根据理论推算,每个晶粒至少需要有五个独立滑移系。? 注:由协调性可知,滑移系较多的体心、面心立方通过多滑移表现出良好的塑性,而密排六方金属滑移系少,晶粒间协调性差,故塑性变形能力低。??
试用多晶体塑性变形过程说明纯金属晶粒越细、强度越高、塑性越好的原因?1993、1997? 室温变形时,由于晶界强度高于晶内,所以晶粒越细,单位体积内所含晶界越多,强化 效果越好。由Hall-Petch公式,σs?=σ0?+?Kd(-1/2) ,晶粒直径d越小,σs就越高,这就是细晶强化。多晶体的每个晶粒都处在其他晶粒的包围之中,变形不是孤立的,要求临近的晶粒相互配合,协调已经发生塑性变形的晶粒的形状的改变。塑变一开始就必须是多系滑移。晶粒越细小,变形协调性越好,塑性也就越好。此外,晶粒越细小,位错塞积引起的应力集中越不严重,可以减缓裂纹的萌生,曲折的晶界不利于裂纹的扩展,有利于强度和塑性的提高。??
塑性变形对金属组织结构与性能的影响?1996、2006?
组织结构:?1.形成纤维组织?2.形成变形织构?
3.亚结构的细化:随着变形量的增加,位错交织缠结,在晶粒内形成胞状亚结构,叫形变胞?4.点阵畸变严重:金属在塑性变形中产生大量点阵缺陷(空位、间隙原子、位错等),使点阵中的一部分原子偏离其平衡位置,而造成的晶格畸变。
?性能:? 1、?各向异性:形成了显微组织和变形织构。?
2、?形变强化:变形过程中位错密度升高,导致形变胞的不断形成和细化,对位错的滑移产 生巨大的阻碍作用,使金属的
文档评论(0)