磁共振技术讲述.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
磁共振技术讲述

磁共振技术 磁共振简介 磁共振指的是自旋磁共振(spin magnetic resonance)现象。指磁矩不为零的原子或原子核在稳恒磁场作用下对电磁辐射能的共振吸收现象,其意义上较广,包含有核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。用于医学检查的主要是磁共振共像(Magnetic Resonance Imaging,MRI)。 磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。1950年在室温附近观测到固体Cr2O3的反铁磁共振。1953年在半导体硅和锗中观测到电子和空穴的回旋共振。1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。1956年开始研究两种磁共振耦合的磁双共振现象。这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。 图1 电子自旋能级与磁场强度的函数关系 1.固相:焦油中的醌,氢醌自由基。 2.气相:烟雾中的烷氧基,活性氧自由基。 必威体育精装版报道:以自由基形式存在的尼古丁导致吸烟上瘾。 600℃以上自由基可以完全燃烧,低于300℃还原过程。EPR可以检测:吸烟过程中产生自由基的种类、自由基的浓度以及清除效果。 2.4.2 在化学上的应用 EPR可以检测分子结构,以及化学反应机理和反应动力学方面的重要信息。如环辛四烯是一个非平面分子,当用碱金属还原,生成环辛四烯负离子自由基。用电子顺磁共振检测,得到了九条等间距,强度比是 1:8:28:56:70:56:28:8:1的EPR谱线,如图2所示: 图2 环辛四烯负离子自由基电子顺磁共振波谱 环辛四烯环上的八个质子是等性的,环辛四烯负离子应该是平面结构分子。环辛四烯经单电子转移反应后,生成负离子基,此时构型也发生了变化,形成了平面分子。 核磁共振 核磁共振作为一种波谱学方法,是物理学提供给化学、生物、医学和材料科学等领域的一种非常有效的研究手段.核磁共振技术能被用于观测小到原子分子的结构和动力学性质,大到活体动物甚至人体的宏观行为。也正是因为核磁共振技术的广泛应用前景,它在近五十年得到了迅速发展。尤其是在近二十年中,核磁共振在生物医学中的应用及相关技术的研究有了飞跃性的进步,其发展的速度和涉及的范围,已超越了几乎所有人的期望和想象.现在无论是在临床诊断,还是在基础研究中,核磁共振技术都已成为必不可少的重要工具之一。 3.1 核磁共振的发展史 1924年Pauli发现原子核象带电自旋的球体具有角动量及磁矩。 1930年代,物理学家伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。 图3 质量数和质子数均为偶数的原子核,自旋量子数为0 ,即I=0,如12C,16O,32S等,这类原子核没有自旋现象,称为非磁性核。质量数为奇数的原子核,自旋量子数为半整数 ,如1H19F、13C等,其自旋量子数不为0,称为磁性核。质量数为偶数,质子数为奇数的原子核,自旋量子数为整数,这样的核也是磁性核。但迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P 3.3 核磁共振的应用 核磁共振作为一种波谱学方法,在化学、生物、医学和地质科学等领域应用非常广泛。 早期的核磁共振谱主要集中于氢谱,这是由于能够产生核磁共振信号的1H原子在自然界丰度极高,由其产生的核磁共振信号很强,容易检测。随着傅立叶变换技术的发展,核磁共振仪可以在很短的时间内同时发出不同频率的射频场,这样就可以对样品重复扫描,从而将微弱的核磁共振信号从背景噪音中区分出来,这使得人们可以收集13C核磁共振信号。    近年来,人们发展了二维核磁共振谱技术,这使得人们能够获得更多关于分子结构的信息,目前二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改变的是外加磁场的强度,而

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档