C塑性变形与强化机制.PPTVIP

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* 第二节 塑性变形与强化机制 一、单晶体的塑性变形 1、滑移 当作用在位错上的切应力达到某一临界值时,晶体的一部分将沿着一定的晶面(滑移面)和一定的方向(滑移方向)发生相对的滑动,产生了相对的位移。 滑移的结果: 使晶体表面产生台阶、滑移线、滑移带 滑移通常沿原子密度最大的晶面和晶向进行—滑移系 滑移的特征 滑移只能在切应力 的作用下发生 不同加载方式发生塑性变形的能力不同。拉伸、扭转、压缩塑性变形能力依次增加。 工业纯铁压缩变形——滑移线 孪生是切应力作用下晶体的一部分相对于另一部 分沿一定的晶面(孪生面)与晶向(孪生方向) 产生一角度的均匀切变过程。发生切变的区域称 为孪晶或孪晶带。 2、孪生 与滑移相似,孪生也是在切应力的作用下发生的, 但孪生所需的临界切应力远远高于滑移时的临界 切应力,因此,只有在滑移很难进行的条件下, 晶体才发生孪生变形。孪生变形速度极快,常引 起冲击波,并伴随声响。 纯铜 形变退火 退火孪晶 纯锌冲击变形——孪晶 二、多晶体的塑性变形 晶粒变形的不同时性 晶粒变形的相互协调性 晶界的强化作用 处于有利位向(软位向)的晶粒先滑移 处于不利位向(硬位向)的晶粒后滑移 多晶体中每个晶粒都处于其它晶粒的包围之 中,它们的变形必然要与其它临近的晶粒相 互协调配合。 晶界是滑移的障碍,晶界变形抗力较大 晶界多了能强化材料 ——细晶强化 三、材料的强化机制 (一)固溶强化 通过溶入某种溶质元素形成固溶体而使金属强度硬度提高的现象称为固溶强化。分为间隙固溶强化(尺寸比较小的间隙原子引起的强化)和置换固溶强化(尺寸比较大的置换原子引起的强化)。 例如: 纯Cu中加入19%的Ni,可使合金的强度由220MPa提高到380~400MPa,硬度由44HBS升高到70HBS,而塑性由70%降低到50%,降幅不大。若按其它方法(如冷变形加工硬化)获得同样的强化效果,其塑性将接近完全丧失。 由于形成固溶体的溶质原子和溶剂原子的尺寸和性质不同,溶质原子的溶入必然引起一些现象,例如:溶质原子聚集在位错周围钉扎住位错(弹性交互作用);溶质原子聚集在层错处,阻碍层错的扩展与束集(化学交互作用);位错与溶质间形成偶极子(电学交互作用)。这些现象都增加了位错运动的阻力,使金属的滑移变形变得更加困难,从而提高了金属的强度和硬度。 固溶强化机制 电学交互作用 化学交互作用 弹性交互作用 (二)细晶强化 金属的晶粒越细,单位体积金属中晶界和亚晶 界面积越大,金属的强度越高,这就是细晶强化。 晶粒大小对纯铁力学性能的影响 28.8 30.6 39.5 168 184 215 9.7 7.0 2.5 延伸率?(%) 抗拉强度?b(MPa) 晶粒的平均直径d(mm) 细化晶粒不仅能提高材料的强度,还可以改善 材料的塑性和韧性。 因为晶粒越细,单位体积内的晶粒数就越多, 变形时同样的变形量可分散到更多的晶粒中发生, 以产生比较均匀的变形,这样,因局部应力集中而 引起材料开裂的几率较小,使材料在断裂前就有可 能承受较大的塑性变形,得到较大的伸长率、断面 收缩率和具有较高的冲击载荷抗力。 实验证明,金属的屈服强度与其晶粒尺寸之 间有下列关系: σs=σ0+ K/d1/2 此式称为霍耳-配奇公式。 式中:σ0 ——为常数,相当于单晶体的屈服强度; d——为多晶体中各晶粒的平均直径; K——为晶界对强度影响程度的常数, 与晶界结构有关。 σs ——开始发生塑性变形的最小应力 细晶强化机制:晶界是位错运动过程中的障碍。 晶界增多,对位错运动的阻碍作用增强,致使位 错在晶界处塞积(即位错密度增加),金属的强 度增加;在单个晶粒内部,塞积的位错群的长度 减小,应力集中较小,不足于使位错源开动,必 须增加外力。 生产中细化晶粒的方法: 1、加快凝固速度 2、变质处理(如纯铝铸锭) 3、振动和搅拌 Ti变质处理 未变质处理 (三)位错强化 金属中的位错密度越高,则位错运动时越容易发 生相互交割,形成割阶,造成位错缠结等位错运 动的障碍,给继续塑性变形造成困难,从而提高 金属的强度,这种用增加位错密度提高金属强度 的方法称为位错强化。 金属材料经冷塑性变形后,其强度与硬度随变形程度的增加而提高,而塑性、韧性则很快降低的现象为加工硬化或形变强化。 1、概念 例如:自行车链条板(16Mn钢板) 原始厚度3.5mm 150HB ?b=520MPa 五次冷

文档评论(0)

panguoxiang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档