- 1、本文档共18页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
英语(全英文)architecture design of global distributed storage system for data grid 本科论文
Architecture Design of Global Distributed Storage System for Data Grid
Longbo Ran, Hai Jin, Zhiping Wang, Chen Huang, Yong Chen, and Yongjie Jia
Internet and Cluster Computing Center
Huazhong University of Science and Technology, Wuhan 430074, China
Email: hjin@
Abstract
Data grids are becoming increasingly important for sharing large data collections, archiving and disseminating. In this paper we describe architecture of global distributed storage system for data grid. We focus on the management and the capability for the maximum users and maximum resources on the Internet, as well as performance and other issues.
Keywords: Data grids, Match tree, Metadata, Name space
Introduction
Data-intensive, high-performance computing applications require the efficient management and transfer of terabytes or petabytes of information in wide-area, distributed computing environments [1][28]. Examples of data-intensive applications include experimental analyses and simulations in several scientific disciplines, such as high-energy physics, climate modeling, earthquake engineering and astronomy [2][3]. These applications share several requirements. Massive data sets must be shared by a large community of hundreds or thousands of users distributed around the world. Data grids are becoming increasingly important for sharing large data collections, archiving and disseminating.
Researches on massive storage system have gained significant achievements. There are already a number of storage systems used by the grid community, each of which was designed to satisfy specific needs and requirements for storing, transferring and accessing large datasets. These include Distributed Parallel Storage System (DPSS) and High Performance Storage System (HPSS), which provide high performance access to data and utilize parallel data transfer and/or striping across multiple servers to improve performance [4][28]. Distributed File System (DFS) supports high-volume usage, dataset replication
您可能关注的文档
- 西安市西南郊地区污水处理工程环评报告书本科论文.doc
- 西华数字钟 本科论文.doc
- 铣床杠杆的机械加工工艺规程及工艺装备设计 本科论文.doc
- 夏利n3+两厢轿车液压动力转向器设计本科论文.doc
- 铣床专用偏心夹紧机构的设计 本科论文.doc
- 现代化商务写字楼工程施工组织设计本科论文.doc
- 现代三维坐标测量技术新理念本科论文.doc
- 现代物流储配作业优化方案设计本科论文.doc
- 限时抢购线上线下体验商城商业计划书本科论文.doc
- 香蕉秸秆根茬还田机的主传动、粉碎机构设计本科论文.doc
- 2025年梧州医学高等专科学校单招职业适应性测试题库及答案1套.docx
- 2025年梧州医学高等专科学校单招职业技能考试题库必威体育精装版.docx
- 护蛋班会课件.pptx
- 2025年梧州医学高等专科学校单招职业技能测试题库推荐.docx
- 2025年梧州医学高等专科学校单招职业技能考试题库及答案1套.docx
- 2025年梧州医学高等专科学校单招职业技能测试题库必考题.docx
- 护航青春班会课件.pptx
- 2025年梧州医学高等专科学校单招职业技能考试题库附答案.docx
- 2025年梧州医学高等专科学校单招职业倾向性考试题库必威体育精装版.docx
- 2025年梧州医学高等专科学校单招职业技能测试题库及答案1套.docx
文档评论(0)