模式识别概率密度函数的估计.PPTVIP

模式识别概率密度函数的估计.PPT

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共50页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
模式识别概率密度函数的估计

第四章 概率密度函数的估计 概率密度估计的基础知识 参数估计理论 极大似然估计(MLE) 贝叶斯估计(或称最大后验估计) 贝叶斯学习 非参数估计理论 密度估计 Parzen窗估计 K近邻估计(KNE) §4-1 概率密度估计的基础知识 贝叶斯分类器中只要知道先验概率、条件概率或后验概概率 P(ωi),P(x/ωi), P(ωi /x)就可以设计分类器了。现在来研究如何用已知训练样本的信息去估计P(ωi),P(x/ωi), P(ωi /x) 一.参数估计与非参数估计 参数估计:先假定研究的问题具有某种数学模型,如正态分布,二项分布,再用已知类别的学习样本估计里面的参数。 非参数估计:不假定数学模型,直接用已知类别的学习样本的先验知识直接估计数学模型。 二.监督参数估计与非监督参数估计 监督参数估计:样本所属的类别及类条件总体概率概率密度函数的形式已知,而表征概率密度函数的某些参数是未知的。目的在于:由已知类别的样本集对总体分布的某些参数进行统计推断,此种情况下的估计问题称为监督参数估计。 非监督参数估计:已知总体概率密度函数形式但未知样本所属类别,要求推断出概率密度函数的某些参数,称这种推断方法为非监督情况下的参数估计。 注:监督与非监督是针对样本所属类别是已知还是未知而言的。 三. 参数估计得基本概念 1. 统计量:样本中包含着总体的信息,总希望通过样本集把有关信息抽取出来。也就是说,针对不同要求构造出样本的某种函数,该函数称为统计量。 2. 参数空间:在参数估计中,总假设总体概率密度函数的形式已知,而未知的仅是分布中的参数,将未知参数记为 ,于是将总体分布未知参数 的全部可容许值组成的集合称为参数空间,记为 。 3. 点估计、估计量和估计值:点估计问题就是构造一个统计量 作为参数 的估计 ,在统计学中称 为 的估计量。若 是属于类别 的几个样本观察值,代入统计量d就得到对于第i类的 的具体数值,该数值就称为 的估计值。 4. 区间估计:除点估计外,还有另一类估计问题,要求用区间 作为 可能取值范围得一种估计 ,此区间称为置信区间,该类估计问题称为区间估计。 5. 参数估计方法:参数估计是统计学的经典问题,解决方法很多,在此只考虑两种常用方法:一种是最大似然估计方法,另一种是贝叶斯估计方法。 (1) 最大似然估计:把参数看作是确定而未知的,最好的估计值是在获得实际观察样本的最大的条件下得到的。 (2)贝叶斯估计:把未知的参数当作具有某种分布的随机变量,样本的观察结果使先验分布转化为后验分布,再根据后验分布修正原先对参数的估计。 6. 参数估计的评价:评价一个估计的“好坏”,不能按一次抽样结果得到的估计值与参数真值 的偏差大小来确定,而必须从平均和方差的角度出发进行分析,即关于估计量性质的定义。 §4-2参数估计理论 一.极大似然估计 假定: ①待估参数θ是确定的未知量 ②按类别把样本分成M类X1,X2,X3,… XM 其中第i类的样本共N个 Xi = (X1,X2,… XN)T 并且是独立从总体中抽取的 ③ Xi中的样本不包含 (i≠j)的信息,所以可以对每一 类样本独立进行处理。 ④ 第i类的待估参数 根据以上四条假定,我们下边就可以只利用第i类学习样 本来估计第i类的概率密度,其它类的概率密度由其它类 的学习样本来估计。 1.一般原则: 第i类样本的类条件概率密度: P(Xi/ωi)= P(Xi/ωi﹒θi) = P(Xi/θi) 原属于i类的学习样本为Xi=(X1 , X2 ,…XN,)T i=1,2,…M 求θi的极大似然估计就是把P(Xi/θi)看成θi的函数,求 出使它极大时的θi值。 ∵学习样本独立从总体样本集中抽取的 ∴ N个学习样本出现概率的乘积 取对数 : 对θi求导,并令它为0: 有时上式是多解的, 上图有5个解,只有一个解最大即. 2. 多维正态分布情况 ① ∑已知, μ未知,估计μ

您可能关注的文档

文档评论(0)

panguoxiang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档