第八章因子-新讲述.ppt

  1. 1、本文档共86页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第八章因子-新讲述

现代 实用 越野 保留四个因子? 再生相关阵残差明显下降 八、确认性因子分析 Confirmatory Factor Analysis Loosely Speaking … Allows the user to specify prior notions about the structure of the factor model Allows the user to test hypotheses about model parameters and to assess fit Prior Notions? About which variables load on which factors. About how correlated you think the underlying factors are. Recall, in the exploratory model the underlying factors are necessarily modeled as uncorrelated. Testing and Fit? With some prior notions fixed and maximum likelihood estimation employed, standard errors of parameter estimates are available. These are “asymptotic” – or valid with large samples. Likewise, formal fit statistics are available (typically chi-squared statistics) that allow model comparisons Exploratory Two-Factor Model 待估参数:?ij, ?i, i=1,…5, j=1,2 Specific weighting pattern hypothesized. Number of parameters to be estimated reduced Typical Confirmatory Model with 待估参数:?11, ?21, ?31, ?42, ?52 ,?12, ?i, i=1,…5 Schematically X1 X2 X3 X4 X5 h1 h2 h3 h4 h5 f1 f2 Wij =1 if xi and xj are hypothesized to load on the same factor Wij=cov(f1,f2) if xi and xj are hypothesized to load on different factors Covariance Model 确认性因子分析一般模型 Asymptotic Standard Error(标准误的一致估计量 For the comfirmatory factor analysis, we are able to obtain asymptotic standard error of the parameter estimates. This enables us to conduct statistical tests of the parameter values Goodness of Fit The statistics to test the goodness-of-fit of the model Goodness-of-fit index(GFI) Better greater than o.95 GFI adjusted for degrees of freedom (AGFI) Better greater than o.90 ?2 with p value H0:the proposed model fits as well as a perfect model P0.2 Measure Reliability测量信度 tells us whether a particular variable Xi does a good job of measuring the true underlying factor that it purports to measure Rule of thumb: ?i≥0.7 X1 Xi Xk h1 hi h3 f1 … … ?1 ?i ?k Reliability of the composite index tells us whether the measurement model is good enough to measure

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档