Enhancing Decision-Based Neural Networks Through Local Competition Gustavo Camps-Valls a,1,.pdf
- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Enhancing Decision-Based Neural Networks Through Local Competition Gustavo Camps-Valls a,1,
Enhancing Decision-Based Neural Networks
Through Local Competition
Gustavo Camps-Valls a,1, Luis Go?mez-Chova a, Joan Vila-France?s a,
Jose? D. Mart??n-Guerrero a, Antonio J. Serrano Lo?pez a,
Emilio Soria-Olivas a
aDept. Enginyeria Electro?nica, Universitat de Vale?ncia, Spain.
Abstract
In this paper the Decision-Based Neural Network (DBNN) learning algorithm is modified
to stimulate local competition. Performance is assessed in ten UCI databases, resulting in
improved results at the expense of a relatively low increase of the computational burden.
Key words: Decision-based neural network; hierarchical network structure; competitive
credit-assignment scheme; local competition; UCI database.
Classification codes: neural networks, signal analysis.
1 Introduction
Credit-assignment criteria is the fundamental guiding principle for a great variety
of classification algorithms available in the literature (e.g. neural networks, decision
trees, support vector machines [1]). A particularly interesting decision-driven algo-
rithm for pattern recognition is the decision-based neural network (DBNN), which
usually provides very fast and satisfactory learning performance, along with an easily
scalable network’s structure. However, different strategies are needed when dealing
with highly overlapping distributions and/or issues on false acceptance/rejection, e.g.
introduction of non-linear discriminant functions, fuzzy-decision neural networks, or
modular networks (see [2,3] for full details).
1 Correspondence address: Prof. Gustavo Camps-Valls. Escola Te?cnica Superior
d’Enginyeria (ETSE). Dept. Enginyeria Electro?nica. Grup de Processament Digital de
Senyals. C/ Dr. Moliner, 50. Burjassot (Vale?ncia). Spain. Tel.: +34 96 3160197; Fax: +34
96 3160466. E-mail address: gustavo.camps@uv.es, http://www.uv.es/~gcamps.
Preprint submitted to Neurocomputing Journal (short communications)4 September 2005
In the DBNN framework, multi-classification problems are tackled by means of task
div
您可能关注的文档
- CYTEC Why Did My Product Turn Yellow.pdf
- d-Wave bipolaronic stripes and two energy scales in cuprates.pdf
- C语言实现的socket5代理.pdf
- D17 2028-B ECC1 en.pdf
- D2-926xx 数字频子系统.pdf
- Damped quantum harmonic oscillator density operator and related quantities.pdf
- dadisick说明书QC QA QE AT.pdf
- Data aggregation in wireless sensor networks using ant colony algorithm.pdf
- Daimler_Daimler_Trucks_at_a_Glance_2012_en.pdf
- Data Mining in Petroleum Upstream-石油工业上游数据挖掘.pdf
最近下载
- 废旧塑料购销合同6篇.docx VIP
- 山东省烟台市芝罘区2022-2023学年七年级(五四学制)上学期期中地理试题(含答案).docx VIP
- 建筑工程施工技术交底大全.docx
- 柔性光伏钢构及组件安装施工方案.docx VIP
- 中成药学讲稿祛暑中成药.docx VIP
- 石油化工企业设计防火规范(GB50160-2018-).doc
- 山东省烟台市芝罘区(五四制)2023-2024学年六年级上学期期中考试生物试题(解析版).docx VIP
- 医疗机构医院感染管理专职人员管理办法(2020年版).pdf
- 南宁师范大学信息技术课程与教学考研真题试题2019年.pdf
- 加强风电设备管理提升风机可利用率(电力系统及自动化范文).doc
文档评论(0)