- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Fusion (2D)2PCALDA A new method for face recognition
Applied Mathematics and Computation 216 (2010) 3195–3199Contents lists available at ScienceDirect
Applied Mathematics and Computation
journal homepage: www.elsevier .com/ locate/amcFusion (2D)2PCALDA: A new method for face recognition
Guohong Huang
Department of Information, Guangdong University of Technology, Guangzhou 510006, PR China
a r t i c l e i n f o a b s t r a c tKeywords:
Fusion face image
F(2D)2PCA
LDA
Face recognition
Feature extraction0096-3003/$ - see front matter 2010 Elsevier Inc
doi:10.1016/j.amc.2010.04.042
E-mail address: h_guohong@163.comThis paper proposes an efficient face representation and recognition method, which
combines the both information between rows and those between columns from
two-directional 2DPCA on fusion face image and the optimal discriminative information
from column-directional 2DLDA. Experiment results on ORL and Yale face database demon-
strate the effectiveness of the proposed method.
2010 Elsevier Inc. All rights reserved.1. Introduction
Principal component analysis (PCA) and Linear discriminant analysis (LDA) are two well-known feature extraction and
data representation techniques widely used in the areas of pattern recognition for feature extraction and dimension reduc-
tion. PCA performs dimensionality reduction by projecting the original data onto the lower dimensional linear subspace
spanned by the leading eigenvectors of the data’s covariance matrix. PCA minimizes the reconstruction error in the sense
of least square errors, so PCA can find the most representative features. However, PCA is not ideal for general classification
tasks, since it ignores the class label information. LDA is a supervised learning algorithm, and its goal is to find a linear trans-
formation that maximizes the between-class scatter and minimizes the within-class scatter of the training set, which pre-
serves the discriminating information. It is generally believed that LDA-based face recognition methods are superior to those
based on P
您可能关注的文档
- Evolution of low-mass star and brown dwarf eclipsing binaries.pdf
- Evolution of Mid-IR Excess Around Sun-like Stars Constraints on Models of Terrestrial Plane.pdf
- Evolution of seismic signals and slip patterns along subduction zones insights from a frict.pdf
- EVOLUTION OF SOFTWARE AGENT-BASED E-COMMERCE BASED ON AGENT COMPETITION MODEL.pdf
- Exact Activation Energy of Magnetic Single Domain Particles.pdf
- Exact Conservation Laws of the Gradient Expanded Kadano#--Baym Equations.pdf
- Exact O(alpha) Corrections to the Single Hard Bremsstrahlung Process in Low Angle Bhabha Sc.pdf
- Exam1pass 000-920 exam braindumps free download.pdf
- Exam1pass 000-885 exam braindumps free download.pdf
- Exam1pass 310-202 exam braindumps free download.pdf
- 标准化知识学习题库及答案(2)(1001—2000题).docx
- 智慧树知到《微生物学(武昌理工学院)》章节测试答案.docx
- 智慧树知到《健美操(临沂大学)》章节测试答案.docx
- 智慧树知到《跟着音乐去旅行(浙江旅游职业学院)》章节测试答案.docx
- python编程300例代码程序.docx
- 智慧树知到《社会学概论(聊城大学)》章节测试答案.docx
- 智慧树知到《趣识古文字(吉林师范大学)》章节测试答案.docx
- 智慧树知到《大学美育(重庆工业职业技术学院)》章节测试答案.docx
- 智慧树知到《调酒与茶艺(三亚航空旅游职业学院)》章节测试答案.docx
- 智慧树知到《星期音乐会(同济大学)》章节测试答案.docx
文档评论(0)