Gaussian swarm a novel particle swarm optimization algorithm.pdf

Gaussian swarm a novel particle swarm optimization algorithm.pdf

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Gaussian swarm a novel particle swarm optimization algorithm

Proceedings of the 2004 lEEE Conference on Cybernetics and Intelligent Systems Singapore, 1-3 December, 2004 Gaussian Swarm: A Novel Particle Swarm Optimization Algorithm Renato A. Krohling Lehrstuhl Elektrische Steuerung und Regclung (ESR) Fakult3t ftir Elektrotechnik und lnformationstechnik UniversiBt Dortmund D-4422 1 Dortmund, Germany E-mail: rcnato.krohling@uni-dortmund.de Abstract--In this paper, a novel particle swarm optimization algorithm based on the Gaussian probability distribution is ’ proposed. The standard Particle Swarm optimization (PSO) algorithm has some parameters that need to be specified before using the algorithm, e.g., the accclerating constants cI and c2, the inertia weight w, the maximum velocity Vmnr, and the number of particles of the swarm. The purpose of this work is the development of an algorithm based on the Gaussian distribution, which improves the convergence ability of PSO without the necessity of tuning thcsc parameters. The only parameter to be specified by the user is the number of particles. The Gaussian PSO algorithm was tested on a suite of well-known benchmark functions and thc results were compared with the results of the standard PSO algorithm. The simulation results shows that the Gaussian Swarm outpcrforms the standard one. ’ Keywords: Particle Swarm Optimiziztion, Gaussian distribution, nonlinear optimizution. 1. INTRODUCTION Particle Swarm Optimization (PSO) originally developed by Kennedy and Eberhart [l], [2] is a population-based algorithm. PSO is initialized with a population of candidate solutions. Each candidate solution in PSO, called particle, has associated a randomized vclocity, moves through the search space. Each particle keeps track of its coordinates in the search space, which are associated with the best solution ’ (fitness) it has achieved so far, pbest. Another “best’ value tracked by the global version of the particle swarm optimizer is the overall best value, g

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档