Gradient-Enhanced Particle Filter for Vision-Based Motion Capture.pdf

Gradient-Enhanced Particle Filter for Vision-Based Motion Capture.pdf

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Gradient-Enhanced Particle Filter for Vision-Based Motion Capture

Gradient-Enhanced Particle Filter for Vision-Based Motion Capture Daniel Grest and Volker Kru?ger Aalborg University Copenhagen, Denmark Computer Vision and Machine Intelligence Lab {dag,vok}@cvmi.aau.dk Abstract. Tracking of rigid and articulated objects is usually addressed within a particle filter framework or by correspondence based gradient descent methods. We combine both methods, such that (a) the correspondence based estimation gains the advantage of the particle filter and becomes able to follow multiple hypotheses while (b) the particle filter becomes able to propagate the particles in a better manner and thus gets by with a smaller number of particles. Results on noisy synthetic depth data show that the new method is able to track motion correctly where the correspondence based method fails. Further experiments with real-world stereo data underline the advantages of our coupled method. 1 Introduction Motion tracking and human pose estimation are important applications in motion anal- ysis for sports and medical purposes. Motion capture products used in the film industry or for computer games are usually marker based to achieve high quality and fast pro- cessing. Marker-less motion capture approaches often rely on gradient based methods [13, 3, 19, 7, 10, 18]. These methods estimate the parameters of a human body model by minimizing differences between model and some kind of observations, e.g. depth data from stereo, visual hulls or silhouettes. Necessary for minimization are correspondences between model and observed data. The main problem of these correspondence based optimization methods is, that they often get stuck in wrong local minima. From this wrong estimated pose they can usually not recover. Other approaches like particle filters [5, 11] try to approximate the probability dis- tribution in the state space by a large number of particles (poses) and are therefore unlikely to get stuck in local minima, because they can follow and test a large num-

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档