LARS Library Least Angle Regression Stagewise Library.pdf

LARS Library Least Angle Regression Stagewise Library.pdf

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
LARS Library Least Angle Regression Stagewise Library

LARS Library: Least Angle Regression Stagewise Library Frank Vanden Berghen IRIDIA, Universite? Libre de Bruxelles fvandenb@iridia.ulb.ac.be November 22, 2005 Let’s assume that we want to perform a simple identification task. Let’s assume that you have a set of n + 1 measures (x(1), x(2), . . . , x(n), y). We want to find a function (or a model) that predicts the measure y in function of the measures x(j), j = 1, . . . , n. The vector x ∈ n = (x(1), . . . , x(n)) t has several names: ? x is the regressor vector. ? x is the input. ? x is the vector of independent variables. y has several names: ? y is the target. ? y is the output. ? (y is the dependant variable). The pair (x, y) has several names: ? (x, y) is an input?output pair. ? (x, y) is a sample. We want to find f such that y = f(x). Let’s also assume that you know that f(x) belongs to the family of linear models. I.e. f(x) = ∑n j=1 x(j)βj + p = x, β +p where ·, · is the dot product of two vectors and p is the constant term. You can also write f(x) = xtβ + p where β ∈ n and p are describing f(x). We will now assume, without loss of generality, that p = 0. We will see later how to compte p if this is not the case. β is the model that we want to find. Let’s now assume that we have many input?output pairs. i.e. we have (x(1), . . . , x(n))(1) = X(1) ? y1 (1) X(2) ? y2 ... ... X(m) ? ym We want to compute β such that ?i X t(i)β = yi. Using matrix notation, β is the solution of: Xβ = y (2) 1 2where X ∈ m×n is a matrix containing on each line a different regressor and y ∈ m contains all the targets. The columns of X contain the independent variables or, in short, the variables. If m ≤ n, we can compute β using a simple Gauss-Jordan elimination. That’s not very interesting. We are usually more interested in the case where m n: when the linear system Xβ = y is over-determined. We want to find β? such that the Total Prediction Error (TPError) is minimum: TPError(β?) = min β (TPError(β)) (3) If we define the total

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档