Local Appropriate Scale in Morphological Scale-Space.pdf

Local Appropriate Scale in Morphological Scale-Space.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Local Appropriate Scale in Morphological Scale-Space

Local Appropriate Scale in MorphologicalScale-SpaceUllrich KotheFraunhofer Institute for Computer Graphics RostockJoachim-Jungius-Str. 9, 18059 Rostock, GermanyEmail: koethe@egd.igd.fhg.deAbstract. This paper discusses the problem of selecting appropriatescales for region detection prior to feature localization. We argue thatan approach in morphological opening-closing scale-space is better thanone in Gaussian scale-space. The proposed operator is based on a newshape decomposition method called morphological band-pass lter thatdecomposes an image into structures of di erent size and di erent cur-vature polarity. Local appropriate scale is then de ned as the scale thatmaximizes the response of the band-pass lter at each point. This op-erator gives constant scale values in a region of constant width, and itszero-crossings coincide with local maxima of the gradient magnitudes.Its usefulness is demonstrated by some examples.1 IntroductionSince their introduction by Witkin [14] scale-space representations have becomea universal approach to a wide variety of computer vision tasks. They are basedon the observation that real world objects and their projections onto imagesexist as meaningful entities only over certain ranges of scale. By making scale aparameter, an image can be transformed into a family of gradually simply edversions of itself. The scale parameter controls the amount of smoothing, thusthe greater it is the more ne scale information is suppressed.The most common implementation of this idea is the Gaussian scale-spacewhich is de ned by a convolution of the image f(x) with a Gaussian kernelwhere the scale parameter determines the width of the Gaussian. The propertiesof this scale-space have been studied intensively by several researchers, see e.g.Lindeberg [8]. Since it is a pure scale-space, i.e. it does not require any priorknowledge about the image content and treets all scales equally, an importantquestion arises: If no scale is special in any way, how

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档