MONOLINGUAL AND CROSSLINGUAL COMPARISON OF TANDEM FEATURES DERIVED FROM ARTICULATORY AND PH.pdf
- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
MONOLINGUAL AND CROSSLINGUAL COMPARISON OF TANDEM FEATURES DERIVED FROM ARTICULATORY AND PH
MONOLINGUAL AND CROSSLINGUAL COMPARISON OF TANDEM FEATURES DERIVED
FROM ARTICULATORY AND PHONE MLPS
O?zgu?r C?etin
1
Mathew Magimai-Doss
2
Karen Livescu
3
Arthur Kantor
4
Simon King
5
Chris Bartels
6
Joe Frankel
5
1
Yahoo!, Inc., Santa Clara, USA
2
IDIAP Research Institute, Martigny, Switzerland
3
Massachusetts Institute of Technology, Cambridge, USA
4
University of Illinois, Urbana-Champaign, USA
5
University of Edinburgh, Edinburgh, UK
6
University of Washington, Seattle, USA
ABSTRACT
In recent years, the features derived from posteriors of a
multilayer perceptron (MLP), known as tandem features, have
proven to be very effective for automatic speech recognition.
Most tandem features to date have relied on MLPs trained
for phone classification. We recently showed on a relatively
small data set that MLPs trained for articulatory feature clas-
sification can be equally effective. In this paper, we provide a
similar comparison using MLPs trained on a much larger data
set—2000 hours of English conversational telephone speech.
We also explore how portable phone- and articulatory feature-
based tandem features are in an entirely different language—
Mandarin—without any retraining. We find that while the
phone-based features perform slightly better in the matched-
language condition, they perform significantly better in the
cross-language condition. Yet, in the cross-language condi-
tion, neither approach is as effective as the tandem features
extracted from an MLP trained on a relatively small amount
of in-domain data. Beyond feature concatenation, we also
explore novel observation modeling schemes that allow for
greater flexibility in combining the tandem and standard fea-
tures at hidden Markov model (HMM) outputs.
Index Terms— Speech recognition, feedforward neural
networks, hidden Markov models.
1. INTRODUCTION
The so-called tandem acoustic modeling refers to a data-
driven feature extraction method using MLPs [1, 2, 3]. In
tandem modeling, the transformed posterior
您可能关注的文档
- LEEG monosilicon pressure sensor.pdf
- LEEG pressure transmitter.pdf
- Leica Photogrammetry Suite_ProductDescription_En.pdf
- Leil Lowndes - Conversation Confidence - Workbook.doc
- LEMWA33X70GX1000_G_Gen2_specsheet_0.0(3535 G2 5700K).pdf
- LensVector-未来的AF发展.pdf
- Leptogenesis, neutrino mixing data and the absolute neutrino mass scale.pdf
- Lesson 8 what’s your job.ppt
- lesson 1 Private conversation.ppt
- Lesson 12xie.ppt
最近下载
- 婚前医学检查相关知识考核试题.pdf VIP
- 社保2024年新规培训.pptx VIP
- 人教版数学二年级上册第六单元 表内乘法(二)大单元整体教学设计.pdf
- DLT 5707-2014 电力工程电缆防火封堵施工工艺导则-行业标准.pdf
- 2024年医疗招聘中医类-中医妇科学考试历年高频考点题库含答案.docx VIP
- 2023年辽宁省营口市中考生物试卷(含答案).doc VIP
- 北师大版生物中考试题(含解析).docx VIP
- 2024年医疗招聘中医类-针灸推拿考试历年高频考点题库含答案.docx VIP
- 初中生物复习选择题.doc VIP
- 北师大版八年级生物上册单元测试-第19章.doc VIP
文档评论(0)