Multiplicative operator splittings in nonlinear diffusion from spatial splitting to multipl.pdf

Multiplicative operator splittings in nonlinear diffusion from spatial splitting to multipl.pdf

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Multiplicative operator splittings in nonlinear diffusion from spatial splitting to multipl

Journal of Mathematical Imaging and Vision 19: 33–48, 2003 c? 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Multiplicative Operator Splittings in Nonlinear Diffusion: From Spatial Splitting to Multiple Timesteps DANNY BARASH? AND TAMAR SCHLICK Department of Chemistry and the Courant Institute of Mathematical Sciences, New York University, New York 10012, USA barash@. MOSHE ISRAELI AND RON KIMMEL Computer Science Department, Technion, Israel Institute of Technology, Haifa 32000, Israel Abstract. Operator splitting is a powerful concept used in many diversed fields of applied mathematics for the design of effective numerical schemes. Following the success of the additive operator splitting (AOS) in performing an efficient nonlinear diffusion filtering on digital images, we analyze the possibility of using multiplicative operator splittings to process images from different perspectives. We start by examining the potential of using fractional step methods to design a multiplicative operator splitting as an alternative to AOS schemes. By means of a Strang splitting, we attempt to use numerical schemes that are known to be more accurate in linear diffusion processes and apply them on images. Initially we implement the Crank-Nicolson and DuFort-Frankel schemes to diffuse noisy signals in one dimension and devise a simple extrapolation that enables the Crank-Nicolson to be used with high accuracy on these signals. We then combine the Crank-Nicolson in 1D with various multiplicative operator splittings to process images. Based on these ideas we obtain some interesting results. However, from the practical standpoint, due to the computational expenses associated with these schemes and the questionable benefits in applying them to perform nonlinear diffusion filtering when using long timesteps, we conclude that AOS schemes are simple and efficient compared to these alternatives. We then examine the potential utility of using multiple timestep methods combine

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档