- 1、本文档共28页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Nonlinear estimation for linear inverse problems with error in the operator
a
r
X
i
v
:
0
8
0
3
.1
9
5
6
v
1
[
m
a
t
h
.S
T
]
1
3
M
a
r
2
0
0
8
The Annals of Statistics
2008, Vol. 36, No. 1, 310–336
DOI: 10.1214/009053607000000721
c? Institute of Mathematical Statistics, 2008
NONLINEAR ESTIMATION FOR LINEAR INVERSE PROBLEMS
WITH ERROR IN THE OPERATOR1
By Marc Hoffmann and Markus Reiss
University of Marne-la-Valle?e and University of Heidelberg
We study two nonlinear methods for statistical linear inverse
problems when the operator is not known. The two constructions
combine Galerkin regularization and wavelet thresholding. Their per-
formances depend on the underlying structure of the operator, quan-
tified by an index of sparsity. We prove their rate-optimality and
adaptivity properties over Besov classes.
1. Introduction.
Linear inverse problems with error in the operator. We want to recover
f ∈L2(D), where D is a domain in Rd, from data
gε =Kf + εW? ,(1.1)
where K is an unknown linear operator K :L2(D)→ L2(Q), Q is a domain
in Rq, W? is Gaussian white noise and ε 0 is the noise level. We do not
know K exactly, but we have access to
Kδ =K + δB?.(1.2)
The process Kδ is a blurred version of K, polluted by a Gaussian opera-
tor white noise B? with a noise level δ 0. The operator K acting on f is
unknown and treated as a nuisance parameter. However, preliminary statis-
tical inference about K is possible, with an accuracy governed by δ. Another
equivalent approach is to consider that for experimental reasons we never
have access to K in practice, but rather to Kδ . The error level δ can be
linked to the accuracy of supplementary experiments; see Efromovich and
Koltchinskii [11] and the examples below. In most interesting cases K?1
Received December 2004; revised April 2007.
1Supported in part by the European research training network Dynstoch.
AMS 2000 subject classifications. 65J20, 62G07.
Key words and phrases. Statistical inverse problem, Galerkin projection method,
wavelet thresholding, minimax rate, degree of ill-posedness, mat
您可能关注的文档
- Microsoft Word - 1995 Zbornik_65 SUBJECT ANALYSIS OF.pdf
- Micro_processmodelofh_省略_normalstructura.pdf
- Microsoft PowerPoint - 套管钻井、尾管钻井 introduce 4-.pdf
- Mill shoe-磨鞋-12.27.pdf
- Mid-IR spectroscopy of T Tauri stars in Chamealeon I evidence for processed dust at the ear.pdf
- Mindray-M5-DataSheet.pdf
- Milliplex Luminex 平台介绍(en).pdf
- mini PCI-E标准.pdf
- MINI-PCIE WIFI 半卡.pdf
- Mining Security-Sensitive Operations in Legacy Code using Concept Analysis.pdf
- 2024-2025学年小学音乐五年级下册花城版(2024)教学设计合集.docx
- 2024-2025学年中职生物学全一册人教版(2010)教学设计合集.docx
- 2024-2025学年小学音乐一年级上册冀少版(2024)教学设计合集.docx
- 2024-2025学年初中生物学七年级上册苏教版(2024)教学设计合集.docx
- 2024-2025学年初中心理健康七年级闽教版教学设计合集.docx
- 2024-2025学年初中信息技术(信息科技)第一册河北大学版(第3版)教学设计合集.docx
- 2024-2025学年初中信息技术(信息科技)七年级下册湘电子版(2019)教学设计合集.docx
- 2024-2025学年高中生物学选择性必修3 生物技术与工程苏教版(2019)教学设计合集.docx
- 2024-2025学年小学科学四年级上册湘科版(2024)教学设计合集.docx
- 2024-2025学年小学数学六年级下册西师大版(2024)教学设计合集.docx
文档评论(0)