- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAPER Particle Swarms for Feature Extraction of Hyperspectral Data
1038
IEICE TRANS. INF. SYST., VOL.E90–D, NO.7 JULY 2007
PAPER
Particle Swarms for Feature Extraction of Hyperspectral Data
Sildomar Takahashi MONTEIRO?a), Student Member and Yukio KOSUGI?, Member
SUMMARY This paper presents a novel feature extraction algorithm
based on particle swarms for processing hyperspectral imagery data. Parti-
cle swarm optimization, originally developed for global optimization over
continuous spaces, is extended to deal with the problem of feature extrac-
tion. A formulation utilizing two swarms of particles was developed to opti-
mize simultaneously a desired performance criterion and the number of se-
lected features. Candidate feature sets were evaluated on a regression prob-
lem. Artificial neural networks were trained to construct linear and nonlin-
ear models of chemical concentration of glucose in soybean crops. Ex-
perimental results utilizing real-world hyperspectral datasets demonstrate
the viability of the method. The particle swarms-based approach presented
superior performance in comparison with conventional feature extraction
methods, on both linear and nonlinear models.
key words: feature extraction, particle swarm optimization, hyperspectral
data, neural networks, principal components analysis
1. Introduction
Advances in optical and computational technology have al-
lowed the acquisition of an ever-increasing amount of infor-
mation from a scene. However, those huge amounts of data
represent a challenge for the algorithms to process and ex-
tract the relevant information for the desired applications.
Despite the wealth of information, the datasets are com-
monly plagued by redundant or irrelevant features. In real-
world applications, the typical scenario of few data samples
in a high-dimensional feature space causes what was termed
by Bellman [1] as the curse of dimensionality, referring to
the exponential increase in complexity of high-dimensional
spaces with the increase in the number of measurements [2].
Hyperspectral im
您可能关注的文档
- Nationality Australian Immigration status Greencard.holder.pdf
- Natural language description of human activities from video images based on concept hierarc.pdf
- Navigation expertise and the human hippocampus a structural brain imaging analysis.pdf
- Natural runoff changes in the Yellow River Basin.pdf
- NBR 11300 烟密度测试标准.pdf
- NCE2 Lesson 10.pdf
- NCE2 Lesson 12.pdf
- Near-IR spectroscopy of OHIR stars in the Galactic Centre.pdf
- NE5000E 配置指南-安全(V300R007C00_03).pdf
- Needed for completion of the human genome hypothesis driven experiments and biologically re.pdf
最近下载
- 专升本语文资料.docx VIP
- 西南15G701-2-混凝土结构轻质填充墙构造图集.pdf
- 《在祖国怀抱里课件》小学音乐冀少2011课标版三年级上课件.ppt
- 烹饪专业调研报告.pdf
- 城市轨道交通安全管理项目2城市轨道交通危险源辨识与安全标志.pptx VIP
- 铁工电〔2023〕54号 国铁集团关于印发《普速铁路工务安全规则》的通知.docx VIP
- 新人教版(部编)一年级语文上册《文语文园地六和大人一起读》优质课教案_20.pdf
- 燃气管道第三方施工管理安全技术规范.pdf
- 生活中的位置(课件)2024-2025-学年度苏教版(2024)数学一年级上册.pptx VIP
- 说课评价量表.doc VIP
文档评论(0)