Spatio-temporal motion-based foregroundsegmentation and shadow suppression.pdf

Spatio-temporal motion-based foregroundsegmentation and shadow suppression.pdf

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Spatio-temporal motion-based foregroundsegmentation and shadow suppression

50 Published in IET Computer Vision Received on 9th March 2008 Revised on 15th January 2009 doi: 10.1049/iet-cvi.2008.0016 ISSN 1751-9632 Spatio-temporal motion-based foreground segmentation and shadow suppression Y.-P. Guan1,2 1School of Communication and Information Engineering, Shanghai University, Shanghai 200072, People’s Republic of China 2Key Laboratory of Advanced Displays and System Application, Ministry of Education, Shanghai University, Shanghai 200072, People’s Republic of China E-mail: ypguan@ Abstract: A relevant problem in computer vision is how to detect and track moving objects from video sequences efficiently. Some algorithms require manual calibration in terms of specification of parameters or some hypotheses. A novel method is developed to extract moving objects through multi-scale wavelet transform across background subtraction. The optimal selection of threshold is automatically determined which does not require any complex supervised training or manual calibration. The proposed approach is efficient in detecting moving objects with low contrast against the background and the detection is less affected by the presence of moving objects in the scene. The developed method combines region connectivity with chromatic consistency to overcome the aperture problem. Ghosts are removed by the proposed background update function, which efficiently prevents undesired corruption of background model and does not consider adaptation coefficient. The mentioned approach is scene-independent and the capacity to extract moving object and suppress cast shadow is high. The developed algorithm is flexible and computationally cost- effective. Experiments show that the proposed approach is robust and efficient in segmenting foreground and suppressing shadow by comparison.1 Introduction Detection and tracking of moving objects from video sequences is a key issue for surveillance, traffic monitoring, athletic performance analysis and others. A widely used approach to

您可能关注的文档

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档