Theoretical Computer Science Adjoints, absolute values and polar decompositions.pdf

Theoretical Computer Science Adjoints, absolute values and polar decompositions.pdf

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Theoretical Computer Science Adjoints, absolute values and polar decompositions

CDMTCS Research Report Series Adjoints, Absolute Values and Polar Decompostions Douglas Bridges Department of Mathematics University of Waikato Fred Richman Department of Mathematics Florida Atlantic University Peter Schuster Mathematics Institut der Universitat Munchen, Germany CDMTCS-069 November 1997 Centre for Discrete Mathematics and Theoretical Computer Science Adjoints, absolute values and polar decompositions Douglas Bridges, Fred Richman, Peter Schuster November 24, 1997 Abstract. Various questions about adjoints, absolute values and polar decompositions of operators are addressed from a constructive point of view. The focus is on bilinear forms. Conditions are given for the existence of an adjoint, and a general notion of a polar decomposition is developed. The Riesz representation theorem is proved without countable choice. 1. Introduction. Let H be an inner product space over the real or complex numbers. An operator is an everywhere defined linear transformation from H to H. If H is finite-dimensional, then every bounded operator has an adjoint, a theorem that can be proved in general using the Law of Excluded Middle. In the constructive framework of this paper, however, it cannot be shown that every bounded operator on an infinite-dimensional Hilbert space has an adjoint. In order to explain this by means of a Brouwerian example, we need a lemma whose proof is a straightforward application of the Cauchy-Schwarz inequality. Lemma 1. Let (αn), (βn) be sequences of complex numbers such that ∑∞ n=1 |αn|2 converges and ∑∞ n=1 |βn|2 is bounded. Then ∑∞ n=1 |αnβn| converges. 2 A Brouwerian example Q: Let (an) be a binary sequence with a1 = 0 and at most one term equal to 1, and let (en) be an orthonormal basis of an infinite-dimensional Hilbert space. Lemma 1 enables us to define a bounded operator Q such that Qen = ane1 for each n. That is Qx = ( ∞∑ n=1 anxn ) e1. If Q has an adjoint, then either ‖Q?e1‖ 0 or else ‖Q?e1‖ 1. Since 〈Q?e1, en〉 = 〈e1, Qen〉 = a

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档