可控有哪些信誉好的足球投注网站偏向的二元蚁群算法.pdf

可控有哪些信誉好的足球投注网站偏向的二元蚁群算法.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
可控有哪些信誉好的足球投注网站偏向的二元蚁群算法

28 8 2011 8 Control Theory Applications Vol. 28 No. 8 Aug. 2011 : 1000?8152(2011)08?1071?10 , , , ( , 315211) : . , . , , . , , , . 0--1 , . : ; ; ; ; ; 0--1 : TP18 : A Binary ant colony algorithm with controllable search bias HU Gang, XIONG Wei-qing, ZHANG Xiang, YUAN Jun-liang (Institute of Electronic Commerce, Ningbo University, Ningbo Zhejiang 315211, China) Abstract: Ant colony algorithm explores the solution space according to the bias produced by pheromone trail. How- ever, most of the existing improvements concentrate in raising the population diversity, instead of controlling the search bias. On the basis of the controllable search bias and by the update pattern of the current pheromone, we determine for any given iteration the lower bound of the probability of no further improvement in solution up to the convergence. Using the relation between the number of visitors and the ant population, and considering the population diversity, we develop a binary ant colony algorithm with controllable search bias. In the test of function optimization and the application to the 0--1 multiple knapsack problem, the algorithm exhibits a good search ability and a high convergence speed. Key words: ant colony algorithm; binary ant colony algorithm; pheromone update pattern; controllable search; function optimization; 0--1 multiple knapsack problem 1 (Introduction) (swarm intelligence) , . , M. Dorigo (traveling salesman problem, TSP) (ant system, AS)[1], (ant colony optimization, ACO)[2] . . , . [3] , , , . , , . , [4] , . (search bias) , , . , . , ( 4) . , , , . 2 (The basic framework of ACO algorithm) , n , (combinatorial optimization, CO), : 1[5,6] P = : 2009?12?01; : 2010?11?15. : (Y1080364); (Y1100052). 1072 28 (S,Ω, f) . : S , Ω , f : S → R+ . S Ω f s?. S : n Xi(i = 1, 2, · · · , n), Xi Di = {c1i , c2i , c |Di| i }, X i = c j i (i = 1, 2, · · · , n), s, S s . Ω , , P , . s? ∈ S, f(s?)  f(s), ?s ∈ S, s? , S? ? S. S? , cji τ ji , τ . , . SP , Xi , cji P (c j i |SP ) P

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档