辽工大有限差分法实验报告详解.doc

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
班 级: 姓 名: 学 号: 指导教师: 成 绩: 求解金属槽的电位分布 1.实验原理 利用有限差分法和matlab软件解决电位在金属槽中的分布。 有限差分法基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 ,解此方程组就可以得到原问题在离散点上的近似解.然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题。 2.有限差分法 方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。 定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。 有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。 2.1有限差分法原理 图1-1 有限差分法的网格划分 导体槽中静电场的边值问题的拉普拉斯方程为: (1-1) 为简单起见,将场域分成足够小的正方形网格,网格线之间的距离为h,。节点0、1、2、3、4上的电位分别用、、、和表示。点1、点3在x0处可微,沿x方向在x0处的泰勒级数展开式为 (1-2) (1-3) 点2、点4在y0处可微,沿y方向在y0处的泰勒级数展开式为 (1-4) (1-5) 忽略高次项 (1-6) 稍作变化得到拉普拉斯方程的五点差分格式: (1-7) 可通过迭代法求解以上差分方程。 2.2有限差分法步骤 高斯—赛德尔迭代法 图2-1网络下标标示 (1-8) 进行迭代时可写为 (1-9) ,为行数,,为列数,为迭代次数,为前次迭代的结果,为当次迭代的结果,由于迭代从第一行、第一列开始,()、()点的迭代较()点进行得早,顾可使用当次迭代的结果。直到所有的点电位满足(为所设定精度)时迭代停止。 3.问题描述 设有一个长直接地金属矩形槽,如图2-1所示,其侧壁与底面点位均为零,顶盖电位为100V(相对值),求槽内点位分布。 图3-1 金属槽 4.程序设计 4.1全场域问题 对于问题(1)(2)(3)而言,以步距的正方形网格离散化场域。每个网格对应于矩阵中的单个元素。由此通过矩阵中的值的计算并指定相邻两次的迭代值误差不超过,应用matlab中的矩阵操作。利用ones(x,y)建立一个且每个元素初值都为为1的矩阵A。再对矩阵进行狄利克雷边界初始化,并且设置矩阵的左右边界为0,上下边界分别为100和0。在保证精度的情况下以拉普拉斯差分式进行下一级的数值计算。最终得到一个满足迭代要求的矩阵A。具体程序实现见附录A。 4.2程序流程图 图4-1 程序设计流程图 通过函数conto

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档