网站大量收购闲置独家精品文档,联系QQ:2885784924

从专家诊病模型实例理解智慧医疗大数据[文库].docx

从专家诊病模型实例理解智慧医疗大数据[文库].docx

  1. 1、本文档共22页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
从专家诊病模型实例理解智慧医疗大数据[文库]

从专家诊病模型实例理解智慧医疗大数据大数据可谓是当红炸子鸡,对于它的应用场景,人们已经做了充分的想象,很多也在逐步落地,比如智慧医疗。医疗行业正更多的融入人工智慧、传感技术等高科技,使医疗服务走向真正意义的智能化。面对不同受众,智慧医疗有着不同的内涵。对于公众,意味着更便捷可及的医疗服务;对于医护人员,不仅可以提高诊疗速度,还可以让诊疗更加精准,通过大量的数据分析支持他们的诊断。这里就不得不提到专家系统,它应该是一个典型的医疗应用,是大数据和人工智能的紧密结合。专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。简言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性、系统的透明性和灵活性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等必威体育精装版人工智能技术来实现具有多知识库、多主体的第四代专家系统。接下来将通过生动有趣的过程讲解,帮助读者了解使用SmartMining敏捷挖掘桌面版,以决策树算法为背景,依托大数据如何构建专家诊病模型,以及如何通过可视化探索数据,实现决策树同样的计算结果!该案例的工作流如下:商业目标业务理解:该案例所用的数据是一份医生诊病的数据,如下:表1数据视图其中,年龄、性别、血压、胆固醇、钠、钾是病人的指标,而药物是医生针对病人的情况开出的药物。业务目标:建立专家诊病系统,当把病人的指标输入到该系统时,系统会自动输出该给此类病人开出的药物。数据挖掘目标:建立专家诊病模型,该模型以病人的病例指标为输入,以药物为目标,建立预测模型,该模型可以根据输入指标的值,计算预测值(药物)。操作实现:新建工作流可以点击文件菜单下的新建或者点击工具栏左方的新建按钮()开始创建工作流。点击后会弹出以下向导界面:输入工作流的名字后即可完成创建:图1新建工作流导入数据此时要根据数据存储文件的格式选择相应的导入节点。在这里由于数据源是CSV文件,因此可以选择CSV导入节点(也可以使用可变文件)。左侧节点库中CSV导入节点拖到右侧的工作流中。双击节点或者右键菜单中选择配置,弹出如下配置窗口:图2CSV节点配置点击按钮,选择相应的数据文件。注意,此处如果数据第一行包含字段名,则选中(该数据有),如果有行ID字段,则选中(该数据无,则不选中)。配置完成后,点击。节点下方的预警符号从变成了。红色表示节点尚未配置或者配置有误,此时节点不可执行;黄色表示节点可以执行。点击右键菜单的或者点击工具栏的,即可执行工作流。执行完成后预警符号变成。点击右键菜单的可以查询数据。另外,节点的右端口也会悬停显示数据的行数和字段数。理解数据使用统计分析菜单下的统计节点可以对数据进行描述,这是建模之前必须要做的工作,一方面是为了设计合理的实施方案,另外一方面也是为了更好的选择合适的算法。从表2中可以看出每种分类变量的取值及每种取值的个数。比如,从这里我们可以看出药物字段一共包含五种取值,且出现最多的是Y药物。在这里目标变量为分类型,因此只能选择分类预测类模型,如决策树、逻辑回归等。表2数据描述预建模接下来便是尝试建模,看看建模效果。图3预建模首先,从数据准备列转换菜单下选择类型转换节点。由于性别、血压、胆固醇三个字段实际存储类型该是字符型,但这里是整型,因此为了便于以下分析,使用类型转换节点将它们的类型从整型转化为字符型。配置如下:其次,使用类型节点指定目标变量的角色,将药物的角色设为目标。再次,从数据准备的行菜单中选择分区节点。使用分区节点可以将数据集分成测试集和训练集,训练集用于训练模型,测试集用于测试模型。配置如下:注意,如果选中使用随机种子(),则每次运行分区结果将会是一样的,否则每次运

文档评论(0)

shaoye348 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档