- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
%Krause ICML2010 - Submodular dictionary selection for sparse representation
Submodular Dictionary Selection for Sparse Representation
Andreas Krause krausea@caltech.edu
California Institute of Technology, Computing and Mathematical Sciences Department
Volkan Cevher volkan.cevher@{epfl,idiap}.ch
Ecole Polytechnique Federale de Lausanne, STI-IEL-LIONS Idiap Research Institute
Abstract
We develop an efficient learning framework to
construct signal dictionaries for sparse represen-
tation by selecting the dictionary columns from
multiple candidate bases. By sparse, we mean
that only a few dictionary elements, compared to
the ambient signal dimension, can exactly repre-
sent or well-approximate the signals of interest.
We formulate both the selection of the dictionary
columns and the sparse representation of signals
as a joint combinatorial optimization problem.
The proposed combinatorial objective maximizes
variance reduction over the set of training signals
by constraining the size of the dictionary as well
as the number of dictionary columns that can be
used to represent each signal. We show that if
the available dictionary column vectors are inco-
herent, our objective function satisfies approxi-
mate submodularity. We exploit this property to
develop SDSOMP and SDSMA, two greedy algo-
rithms with approximation guarantees. We also
describe how our learning framework enables dic-
tionary selection for structured sparse represen-
tations, e.g., where the sparse coefficients occur
in restricted patterns. We evaluate our approach
on synthetic signals and natural images for rep-
resentation and inpainting problems.
1. Introduction
An important problem in machine learning, signal pro-
cessing and computational neuroscience is to deter-
mine a dictionary of basis functions for sparse rep-
resentation of signals. A signal y ∈ Rd has a sparse
representation with y = Dα in a dictionary D ∈ Rd×n,
when k d coefficients of α can exactly represent or
well-approximate y. Myriad applications in data anal-
ysis and processing–from deconvolution to data mi
您可能关注的文档
- (ISP图的画法可参考)等电点沉淀法回收蛋白的特性.pdf
- (MX-GC控制柜)).pdf
- (ppt) IBM Content Based Copy Detection System for TRECVID 2009.pdf
- (ppt)BEA Weblogic Server8.1 Web Service.pdf
- (Reactive Violet 5R) decolorising native acclimatised bacterial consortia.pdf
- (universal.pdf
- (全6章)HL7 v3基础 Foundation完整版.pdf
- (初三英语测试题二).doc
- (天泉多级泵样本)TDLF-27p.pdf
- (英文)激光打印机上扫描镜实验Laser Printer Scanning Mirror Experiments.pdf
最近下载
- 放紧线工作及安全注意事项.pptx
- 统编版道德与法治六年级上册期末试卷(含答案).docx VIP
- 部编版语文四年级上册第2单元习作《我的家人》课件.pptx VIP
- 2024年重庆市安全员-B证考试题库附答案.doc VIP
- 《汽车发动机再制造过程质量控制研究》16000字.doc
- 航空学院航空法规.ppt
- 隧道注浆堵水施工方案.pdf
- 统编版六年级上册道德与法治期末测试卷(含答案).doc VIP
- 必考点10等边三角形的性质与判定-【题型·技巧培优系列】2022-2023学年八年级数学上册精选专题(人教版)(原卷版+解析).docx VIP
- 2024新信息科技三年级第一单元:开启信息生活大单元整体教学设计.docx
文档评论(0)