- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Convergence and Error Bounds for Universal Prediction of Nonbinary Sequences
a
r
X
i
v
:
c
s
/
0
1
0
6
0
3
6
v
1
[
c
s
.L
G
]
1
5
J
u
n
2
0
0
1
Technical Report IDSIA-07-01, 26. February 2001
Convergence and Error Bounds
for Universal Prediction
of Nonbinary Sequences
Marcus Hutter
IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
marcus@idsia.ch 1 http://www.idsia.ch/~marcus
Keywords
Bayesian sequence prediction; Solomonoff induction; Kolmogorov complexity; learn-
ing; universal probability; finite non-binary alphabet; convergence; error bounds;
games of chance; partial and delayed prediction; classification.
Abstract
Solomonoff’s uncomputable universal prediction scheme ξ allows to predict the next
symbol xk of a sequence x1...xk?1 for any Turing computable, but otherwise un-
known, probabilistic environment μ. This scheme will be generalized to arbitrary
environmental classes, which, among others, allows the construction of computable
universal prediction schemes ξ. Convergence of ξ to μ in a conditional mean squared
sense and with μ probability 1 is proven. It is shown that the average number of
prediction errors made by the universal ξ scheme rapidly converges to those made by
the best possible informed μ scheme. The schemes, theorems and proofs are given
for general finite alphabet, which results in additional complications as compared to
the binary case. Several extensions of the presented theory and results are outlined.
They include general loss functions and bounds, games of chance, infinite alphabet,
partial and delayed prediction, classification, and more active systems.
1This work was supported by SNF grant 2000-61847.00 to Ju?rgen Schmidhuber.
1 Introduction
The Bayesian framework is ideally suited for studying induction problems. The probability
of observing xk at time k, given past observations x1...xk?1, can be computed with Bayes’
rule if the generating probability distribution μ, from which sequences x1x2x3... are drawn,
is known. The problem, however, is that in many cases one does not even have a reasonable
es
您可能关注的文档
- CC3100,CC3200 WiFi Solution.pdf
- CD8+ T cells medicates antibody-indenpendent platelet clearance in mice.pdf
- CDCLVD1208RHDT;CDCLVD1208RHDR;中文规格书,Datasheet资料.pdf
- CDCLVD2102RGTT;CDCLVD2102RGTR;CDCLVD2102EVM;中文规格书,Datasheet资料.pdf
- CDM CDE_381L 电容 spec.pdf
- CCS5.5的详细操作说明.pdf
- CE1 unit7-Kids on the Track.ppt
- CEAO COMPLIANCE WITH FEDERAL REGULATIONS ON BRIDGE INSPECTIONS.pdf
- Celebrate Spring with a Favorite Tale!.pdf
- Cell-interactive alginate hydrogels for bone tissue engineering.pdf
最近下载
- 物业保安军训标准--队列.doc
- 广东省中小学教育创新成果奖评奖申请表及申报说明.doc
- 环境影响评价报告公示:年产4亿平方米锂电池专用湿法隔膜和改性涂覆隔膜项目环评报告.doc VIP
- 兵器工业集团第十一届职业技能竞赛数控铣工理论试题库资料-下(多选、判断题汇总).pdf VIP
- 徐州工程学院2010届毕业生生源信息一览表.xls VIP
- 秃鸡散_千金卷二十_方剂加减变化汇总.doc
- 市政道路施工与质量验收规范.pdf
- 医院护理品管圈成果汇提高糖尿病住院患者口服降糖药的正确率完整版本PPT易修改.pptx
- 工程已完工补签施工合同模板.docx VIP
- 2024年新版员工安全生产应知应会手册.pptx
文档评论(0)