Crack Detection Application for Fiber Reinforced Concrete.pdf

Crack Detection Application for Fiber Reinforced Concrete.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Crack Detection Application for Fiber Reinforced Concrete

Crack Detection Application for Fiber Reinforced Concrete Using BOCDA-Based Optical Fiber Strain Sensor Michio Imai1; Ryouji Nakano2; Tetsutya Kono3; Toshimichi Ichinomiya4; Satoru Miura5; and Masahito Mure6 Abstract: Distributed optical fiber strain sensors have attracted increasing attention in research and applications related to civil engi- neering because no other tools can satisfactorily detect the locations of unpredictable events. For instance, for crack detection, it is necessary to employ a fully distributed sensor because crack locations are a priori unknown. The Brillouin optical correlation domain analysis BOCDA system, a distributed sensor that offers high spatial resolution by using stimulated Brillouin scattering, has undergone significant development over the last decade, during which it has been used in a wide range of civil engineering applications. In this paper, we demonstrate how a BOCDA-based optical fiber strain sensor can be employed to monitor cracks in fiber-reinforced concrete. Crack monitoring is important for checking the structure of such high-performance concrete, which has enhanced strength and toughness since it incorporates fibers. In particular, early detection of tiny cracks is essential for preventing crack growth and dispersion. We carried out a concrete beam-bending test to detect crack-induced strain distribution during loading. For this purpose, we employed an improved BOCDA system that provides enhanced measurement length with high spatial resolution; hence, BOCDA can detect a tiny crack before visual recognition. Moreover, we demonstrate a field application of the BOCDA system to ensure a flawless pedestrian deck made of fiber-reinforced concrete. DOI: 10.1061/ASCEST.1943-541X.0000195 CE Database subject headings: Fiber optics; Probe instruments; Monitoring; Cracking; Fiber reinforced materials; Reinforced concrete; Strain measurement. Author keywords: Fiber optics; Sensors; Monitoring; Cracking; Fiber reinforced mater

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档