- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Data mining solves tough semiconductor manufacturing problems
Data Mining Solves Tough Semiconductor Manufacturing Problems Mike Gardner Motorola Laboratories 2100 East Elliot Road, MD EL508 Tempe, Arizona 85284, USA 480-413-5187 axsm10@ Jack Bieker Motorola Laboratories 2100 East Elliot Road, MD EL508 Tempe, Arizona 85284, USA 480-413-4671 Jack.Bieker@ ABSTRACT Quickly solving product yield and quality problems in a complex manufacturing process is becoming increasingly more difficult. The “low hanging fruit” has been plucked using process control, statistical analysis, and design of experiments which have established a solid base for a well tuned manufacturing process. However, the dynamic “higher-tier” problems coupled with quicker time to market expectations is making finding and resolving problems quickly an overwhelming task. These dynamic “higher tier” problems include: multi-factor nonlinear interactions; intermittent problems; dynamically changing processes; installing new processes; multiple products; and, of course, the increasing volumes of data. Data mining technology can increase product yield and quality to the next higher level by quickly finding and solving these tougher problems. Case studies of semiconductor wafer manufacturing problems are presented. A combination of self-organizing neural networks and rule induction is used to identify the critical poor yield factors from normally collected wafer manufacturing data. Subsequent controlled experiments and process changes confirmed the solutions. Wafer yield problems were solved 10x faster than standard approaches; yield increases ranged from 3% to 15%; endangered customer product deliveries were saved. This approach is flexible and can be appropriate for a number of complex manufacturing processes Keywords Semiconductor yield enhancement, manufacturing optimization, machine learning, data mining, neural networks, self organizing maps, rule induction, pattern recognition. 1 THE PUZZLE: DEBUGGING COMPLEX MANUFACTURING PROCESSES If the world were well
您可能关注的文档
- Charm of small $x$ neutrino DIS.pdf
- Charm particle production in hadronic collisions.pdf
- Charm (and Beauty) Production at the Tevatron.pdf
- Charm Physics with BES-III at BEPC-II.pdf
- Charm quark mass dependence of the electromagnetic dipole operator contribution to anti-B -.pdf
- Charm production in deep inelastic and diffractive scattering.pdf
- Charm Semileptonic Decays.pdf
- Charm spectroscopy on dynamical 2+1 flavor domain wall fermion lattices with a relativistic.pdf
- Charm Production in ep-Collisions.pdf
- Charm counting and B semileptonic branching fraction.pdf
- Data structural bootstrapping, linear path compression, and catenable heap ordered double e.pdf
- DataFactory学习笔记_SariyaLee.pdf
- Data-Intensive XQuery Debugging with Instant Replay.pdf
- Datasheet_Compact-e_English_Rev1.pdf
- Datasheet_Compact-e__English_Rev1.pdf
- dba-02-Getting Start.ppt
- daylighting system.pdf
- DDDT-10044-development-of-a-sublingual-allergy-vaccine-for-grass-pollin_061510.pdf
- DCS A-10C 中英文键位对照表 v2.0 修订版.pdf
- DDR2与DDR3信号完整性及PCB设计.pdf
文档评论(0)