Identifying Respiratory Findings in Emergency Department Reports for Biosurveillance.pdf

Identifying Respiratory Findings in Emergency Department Reports for Biosurveillance.pdf

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Identifying Respiratory Findings in Emergency Department Reports for Biosurveillance

MEDINFO 2004 M. Fieschi et al. (Eds) Amsterdam: IOS Press ? 2004 IMIA. All rights reservedIdentifying Respiratory Findings in Emergency Department Reports for Biosurveillance using MetaMap Wendy W Chapmana, Marcelo Fiszmanb, John N Dowlinga, Brian E Chapmanc, Thomas C Rindfleschb a RODS Laboratory, Center for Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA b National Library of Medicine, Bethesda, MD, USA c Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA Wendy W Chapman, Marcelo Fiszman, John N Dowling, Brian E Chapman, Thomas C RindfleschAbstract Clinical conditions described in patients’ dictated reports are necessary for automated detection of patients with respiratory illnesses such as inhalational anthrax and pneumonia. We ap- plied MetaMap to emergency department reports to extract a set of 71 clinical conditions relevant to detection of a lower respira- tory outbreak. We indexed UMLS terms in emergency depart- ment reports with MetaMap, filtered the indexed output with a specialized lexicon of UMLS terms for the domain, and mapped the clinical conditions of interest to concepts in the lexicon. We compared MetaMap’s ability to accurately identify the condi- tions against a physician’s manual annotations and evaluated incorrectly indexed features to determine what additional pro- cessing is necessary. MetaMap identified the clinical conditions with a recall of 0.72 and a precision of 0.56. Necessary processing beyond MetaMap’s indexing includes finding validation, temporal dis- crimination, anatomic location discrimination, finding-disease discrimination, and contextual inference. Successful identifica- tion of clinical conditions in an emergency department report with MetaMap requires processing techniques specific to the clinical question of interest. Keywords: Natural Language Processing, Information Extraction, Biosur- veillance, Disease Outbreaks Introduction The recent Severe Acute Respiratory Syn

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档