人工智能教学资料 5ai Classification part3.pdfVIP

人工智能教学资料 5ai Classification part3.pdf

  1. 1、本文档共38页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Artificial Intelligence Classification Yanghui Rao Assistant Prof., Ph.D School of Mobile Information Engineering, Sun Yat-sen University Artificial Intelligence: Classification Logistic Regression Model ? If using the ordinary least squares (OLS) regression ? The error terms u are heteroskedastic ? u is not normally distributed because y takes on only two values ? The predicted probabilities can be greater than 1 or less than 0 0 1 T d j j j y w w x u ? ? ? ? ? ? W X? ? Artificial Intelligence: Classification Logistic Regression Model AGE (years) S ig n s o f c o ro n a ry d is e a s e No Yes 0 20 40 60 80 100 Artificial Intelligence: Classification Logistic Regression Model ? The logistic distribution constrains the estimated probabilities to lie between 0 and 1. ? The estimated probability p(y=1|X) is: ? if you let , then p = 0.5 ? as gets really big, p approaches 1 ? as gets really small, p approaches 0 0 1 0 0 1 1 T T T + + 1 = 1 1+ 1 1 1 d j j j d d j j j j j j w w x w w x w w x e p e e e e e ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? W X W X W X ? ? ? ? ? ? 0 1 + =0 d j j j w w x ? ? 0 1 + d j j j w w x ? ? 0 1 + d j j j w w x ? ? Artificial Intelligence: Classification Logistic Regression Model 0 1 LR Model Logit Model Artificial Intelligence: Classification Logistic Regression Model ? The logit model solves these problems: ? p is the probability that the event y occurs, p(y=1|X) ? p/(1-p) is the odds ratio (e.g., odds of disease) ? log[p/(1-p)] is the log odds ratio, or logit 0 1 T log 1 d j j j p w w x u p ? ? ? ? ? ?? ? ?? ? ? ? W X? ? Artificial Intelligence: Classification Logistic Regression Model ? Recall that OLS Regression could utilized an “ordinary least squares” formula to create the “linear model” we used. ? The Logistic Regression model will be constructed by an iterative maximum likelihood procedure. ? This is a computer dependent program that: ? starts with arbitrary values of the regression coefficients and constructs an initial model for predicting t

您可能关注的文档

文档评论(0)

1243595614 + 关注
实名认证
文档贡献者

文档有任何问题,请私信留言,会第一时间解决。

版权声明书
用户编号:7043023136000000

1亿VIP精品文档

相关文档