人体骨骼核扫描图的混合空间增强分解.doc

人体骨骼核扫描图的混合空间增强分解.doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE  PAGE 13 数字图像处理混合空间增强法学习报告 学生姓名: 邹晓敏 学 号: 6103313025 专业班级: 数媒131 学习目的与内容: 对混合模糊图像进行处理,为得到一个满意的结果,对其应用多种互补的图像增强技术,最终得到良好效果。本次的数字图像处理实验是对人体骨骼核扫描图片进行混合增强处理,通过混合增强突出骨骼的更多细节。原图中骨骼比较模糊,边缘不够清晰,对比度不够,对此应该采取的策略是首先用拉普拉斯变换突出图像中的小细节,然后用梯度法突出其边缘。平滑后的拉普拉斯变换将用于掩蔽拉普拉斯图像,最后用灰度变换来扩展图像的灰度动态范围。 算法介绍: 软件开发环境: 基于vc++ MFC实现软件编写。 具体步骤: (1)拉普拉斯算子 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: 为了更适合于数字图像处理,将该方程表示为离散形式 另外,拉普拉斯算子还可以表示成模板的形式,一般增强技术对于陡峭的边缘和缓慢变化的边缘很难确定其边缘线的位置。但此算子却可用二次微分正峰和负峰之间的过零点来确定,对孤立点或端点更为敏感,因此特别适用于以突出图像中的孤立点、孤立线或线端点为目的的场合。 用以上算子与原图进行卷积,得到中心像素点与邻域像素点的差值。得到的拉普拉斯变换图M1,M1与原图相加得到M2,锐化原图。 (2)边缘检测 一幅图像的边缘是通过一阶和二阶数字导数来检测得到的。边缘的宽度取决于从初始灰度级跃变到最终灰度级的斜坡的长度。这个长度又取决于斜度,而斜度又取决于模糊程度。所以,我们可知,模糊的边缘使其变粗,而清晰的边缘使其变得较细。 一幅数字图像的一阶导数是基于各种二维梯度的近似值。图像在位置的梯度定义为下列向量: 梯度向量指向在坐标的的最大变化率方向。在边缘检测中,一个重要的量是向量的大小,用表示,。一般来讲称为梯度。考虑到图片中的噪声,所以在此处用sobel算子。Sobel卷积因子为: 该算子包含两组3x3???矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下: sobel算子运算结果得到M3,保留边缘去除噪声 根据最后运行的结果显示,sobel图像的边缘要比拉普拉斯图像的边缘突出很多。拉普拉斯变换作为一种二阶微分算子,在图像细节的增强处理方面有明显的优点,但拉普拉斯变换与梯度变换相比较会产生更多的噪声。其中位于平滑区域的噪声非常显眼,梯度变换在灰度变换的区域的相应要比拉普拉斯更强烈,而梯度变换对噪声和小细节的响应要比拉普拉斯变换弱,而且可以通过均值滤波器对其进行平滑处理而进一步的降低,对梯度图像进行平滑处理并用拉普拉斯图像与他相乘。处理后的结果在灰度变化强的区域仍然保留细节,而在灰度变化相对平坦的区域则减少噪声,这种处理可以看做是将拉普拉斯变换与梯度变换的有点结合。 (3)平滑处理 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 一个5*5的均值滤波器对图像进行平滑处理,5*5的均值滤波器对图像进行平滑处理得到图像M4。再由M2和M4相乘形成掩蔽图像M5。 (4)锐化图像 拉普拉斯与平滑后的梯度图像乘积的结果可以看出,强边缘的优势和可见噪声的减少。将乘积图像与原始图像相加就得到了锐化图像。与原始图像相比,锐化处理后的图像细节增加很明显。单独使用拉普拉斯或者梯度变换不能达到这种效果。而且以上的锐化过程没有影响图像的灰度动态变化范围。进行增强处理的最后一步就是扩大锐化图像的灰度动态范围。将M5和原图M求和锐化得到M6,再对M6做幂律变换,扩散灰度范围,提升对比度,但幂次必须小于1。得到最后的混合空间加强图像M7。 源程序核心代码及运行结果 //拉普拉斯(Laplacian)算子 void CImageProcessingDoc::LaplaceOperator(CImage * pSrcImage, CImage * pDstImage, int laplacetype,bool bCalibration) { int x;int y;int i;int j; int mWidth = pSrcImage-GetWidth(); int mHeight = pSrcImage-GetHeight(); int mRowBytes = pSrcImage-G

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档