Cluster Analysis of Heterogeneous Rank Data.pdf

Cluster Analysis of Heterogeneous Rank Data.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Cluster Analysis of Heterogeneous Rank Data

Cluster Analysis of Heterogeneous Rank Data Ludwig M. Busse bussel@student.ethz.ch Peter Orbanz porbanz@inf.ethz.ch Joachim M. Buhmann jbuhmann@inf.ethz.ch Institute of Computational Science, ETH Zurich, 8092 Zurich, Switzerland This revision of the ICML 2007 proceedings article corrects an error in Sec. 3. Abstract Cluster analysis of ranking data, which occurs in consumer questionnaires, voting forms or other inquiries of preferences, at- tempts to identify typical groups of rank choices. Empirically measured rankings are often incomplete, i.e. different numbers of filled rank positions cause heterogeneity in the data. We propose a mixture approach for clustering of heterogeneous rank data. Rank- ings of different lengths can be described and compared by means of a single probabilistic model. A maximum entropy approach avoids hidden assumptions about missing rank po- sitions. Parameter estimators and an ef- ficient EM algorithm for unsupervised in- ference are derived for the ranking mixture model. Experiments on both synthetic data and real-world data demonstrate significantly improved parameter estimates on heteroge- neous data when the incomplete rankings are included in the inference process. 1. Introduction Ranking data commonly occurs in preference surveys: A number of subjects are asked to rank a list of items or concepts according to their personal order of prefer- ence. Two types of ranking data are usually discussed in the literature: Complete and partial (or incom- plete) rankings. A wide range of probabilistic mod- els is available for both (Diaconis, 1988; Critchlow, 1985). A complete ranking of r items is a permutation of these items, listed in order of preference. Mathemat- ical models of rankings are based on the corresponding permutation group. A partial ranking is a preference Appearing in Proceedings of the 24 th International Confer- ence on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by the author(s)/owner(s). list of t out of r item

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档