- 1、本文档共26页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Symmetric tensors and symmetric tensor rank
SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK
PIERRE COMON?, GENE GOLUB? , LEK-HENG LIM? , AND BERNARD MOURRAIN?
Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In
this paper, we study various properties of symmetric tensors in relation to a decomposition into
a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k
non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1
tensors, each of them being symmetric or not. The rank of a symmetric tensor is the minimal
number of rank-1 tensors that is necessary to reconstruct it. The symmetric rank is obtained when
the constituting rank-1 tensors are imposed to be themselves symmetric. It is shown that rank and
symmetric rank are equal in a number of cases, and that they always exist in an algebraically closed
field. We will discuss the notion of the generic symmetric rank, which, due to the work of Alexander
and Hirschowitz, is now known for any values of dimension and order. We will also show that the
set of symmetric tensors of symmetric rank at most r is not closed, unless r = 1.
Key words. Tensors, multiway arrays, outer product decomposition, symmetric outer product
decomposition, candecomp, parafac, tensor rank, symmetric rank, symmetric tensor rank, generic
symmetric rank, maximal symmetric rank, quantics
AMS subject classifications. 15A03, 15A21, 15A72, 15A69, 15A18
1. Introduction. We will be interested in the decomposition of a symmetric
tensor into a minimal linear combination of symmetric outer products of vectors (i.e.
of the form v ? v ? · · · ? v). We will see that a decomposition of the form
A =
∑r
i=1
λivi ? vi ? · · · ? vi (1.1)
always exists for any symmetric tensor A (over any field). One may regard this as a
generalization of the eigenvalue decomposition for symmetric matrices to higher order
symmetric tensors. In particular, this will allow us to define a notion of symmetric
tensor rank (as th
您可能关注的文档
- A Comparison of Colour and Visual Texture as Codes for Use a.pdf
- Republic Correspondence e-mail.pdf
- Resource management, soil fertility and sustainable.pdf
- Behaviour and growth of dragonfly larvae along a permanent to temporary water habitat gradient.pdf
- SY7088 Rev..pdf
- SY8120 DATASHEET规格书.pdf
- Symbolic Representation of General Alternating Waves and of Double Frequency Vector Products.pdf
- SYN531R Datasheet Version 2.0.pdf
- sync4j_dm_demo.pdf
- Syntax-Based Alignment Supervised or Unsupervised.pdf
最近下载
- 中控视频会议室设计方案书.pdf VIP
- 2010年3月北京润枫欣尚项目价格及推售方案.ppt
- 2023年成都理工大学工程技术学院软件工程专业《计算机组成原理》科目期末试卷B(有答案).docx VIP
- 《四肢骨折经典》课件.ppt
- 成都理工大学工程技术学院《线性代数》2018-2019学年第一学期期末试卷.doc VIP
- (必威体育精装版)24年秋统编一年级语文上册口语交际:我会想办法教学设计【精品】.docx
- 胜利油田CCUS技术及应用.docx
- 成都理工大学工程技术学院《线性代数》2021-2022学年第一学期期末试卷.pdf VIP
- 度量衡完整版.ppt
- 成都理工大学工程技术学院《线性代数》2020-2021学年第一学期期末试卷.pdf VIP
文档评论(0)