- 1、本文档共4页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
[实训]用Excel进行假设检验
PAGE
PAGE 4
[实训四]假设检验
一、简介:
假设检验是统计推断中的重要内容。以下例子利用Excel的正态分布函数NORMSDIST、判断函数IF 等,构造一张能够实现在总体方差已知情况下进行总体均值假设检验的Excel 工作表。
二、操作步骤:
1.构造工作表。如图附-15 所示,首先在各个单元格输入以下的内容,其中左边是变量名,右边是相应的计算公式。
2. 为表格右边的公式计算结果定义左边的变量名。选定A3:B4,A6:B8,A10:A11,A13:A15 和A17:B19 单元格,选择“插入”菜单的“名称”子菜单的“指定”选项,用鼠标点击“最左列”选项,然后点击“确定”按扭即可。
图 附-15
3.输入样本数据,以及总体标准差、总体均值假设、置信水平数据。如图附-16 所示。
4.为样本数据命名。选定C1:C11 单元格,选择“插入”菜单的“名称”子菜单的“指定”选项,用鼠标点击“首行”选项,然后点击“确定”按扭,得到如图附-16 中所示的计算结果。
图 附-16
三、结果说明:
如图附-16 所示,该例子的检验结果不论是单侧还是双侧均为拒绝Ho 假设。所以,根据样本的计算结果,在5%的显著水平之下,拒绝总体均值为35 的假设。同时由单侧显著水平的计算结果还可以看出,在总体均值是35 的假设之下,样本均值小于等于31.4 的概率仅为0.020303562。
四、双样本等均值假设检验
(一)简介:双样本等均值检验是在一定置信水平之下,在两个总体方差相等的假设之下,检验两个总体均值的差值等于指定平均差的假设是否成立的检验。我们可以直接使用在Excel 数据分析中提供双样本等均值假设检验工具进行假设检验。以下通过一例说明双样本等均值假设检验的操作步骤。例子如下,某工厂为了比较两种装配方法的效率,分别组织了两组员工,每组9 人,一组采用新的装配方法,另外一组采用旧的装配方法。18个员工的设备装配时间图附-17 中表格所示。根据以下数据,是否有理由认为新的装配方法更节约时间?
图 附-17
(二)操作步骤:以上例子可按如下步骤进行假设检验。
1. 选择“工具”菜单的“数据分析”子菜单,双击“t-检验: 双样本等方差假设”选项,则弹出图附-18 所示对话框。
图 附-18
图 附-19
2. 分别填写变量1 的区域:$B$1:$B$10,变量2 的区域:$D$1:$D$10,由于我们进行的是等均值的检验,填写假设平均差为0,由于数据的首行包括标志项选择标志选项,所以选择“标志”选项,再填写显著水平α为0.05,然后点击“确定”按扭。则可以得到图附-19 所示的结果。
(三)结果分析:如图附-19 中所示,表中分别给出了两组装配时间的平均值、方差和样本个数。其中,合并方差是样本方差加权之后的平均值,Df是假设检验的自由度它等于样本总个数减2,t 统计量是两个样本差值减去假设平均差之后再除于标准误差的结果,“P(T=t)单尾”是单尾检验的显著水平,“t 单尾临界”是单尾检验t 的临界值,“P(T=t)双尾”是双尾检验的显著水平,“t 双尾临界”是双尾检验t 的临界值。由下表的结果可以看出t 统计量均小于两个临界值,所以,在5%显著水平下,不能拒绝两个总体均值相等的假设,即两种装配方法所耗时间没有显著的不同。
Excel 中还提供了以下类似的假设检验的数据分析工具,它们的名称和作用如下:
1. “t-检验:双样本异方差假设” :此分析工具可以进行双样本student t-检验,与双样本等方差假设检验不同,该检验是在两个数据集的方差不等的前提假设之下进行两总体均值差额的检验,故也称作异方差 t-检验。可以使用 t-检验来确定两个样本均值实际上是否相等。当进行分析的样本个数不同时,可使用此检验。如果某一样本组在某次处理前后都进行了检验,则应使用“成对检验”。
2. “t-检验:成对双样本均值分析” :此分析工具可以进行成对双样本学生氏t-检验,用来确定样本均值是否不等。此 t-检验并不假设两个总体的方差是相等的。当样本中出现自然配对的观察值时,可以使用此成对检验,例如,对一个样本组进行了两次检验,抽取实验前的一次和实验后的一次。
3. “z - 检验:双样本均值分析” :此分析工具可以进行方差已知的双样本均值z - 检验。此工具用于检验两个总体均值之间存在差异的假设。例如,可以使用此检验来确定两种汽车模型性能之间的差异情况。
文档评论(0)