- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
LMS振动噪声工具降低推土机的噪声-声学仿真的个阶段
LMS振动噪声工具降低推土机的噪声-声学仿真的四个阶段
作者:LMS设计出安静的建筑设备 尽管在设计建筑设备时,操作人员的舒适性和噪声因素是需要考虑的重要因素,但是通常建筑设备的设计主要是考虑满足其工作需要。现在,安静性已经成为建筑设备产品的关键属性。生产商如果无法达到这个要求的话,在国际市场上将会面临激烈残酷的竞争。原来在产品开发末期的实物试验中,如果出现了噪声问题,生产商就会通过增加隔声部件或者对结构进行改变来减少噪声辐射。但是这些努力往往存在很多臆测的性质,同时费用高昂且耗时,不但没解决问题,反而产生更多的问题。John Deere将安静性设计到建筑设备中,从而开辟了新天地,同时创建了强大的品牌价值,并巩固了本公司在行业内的领导地位。
声音品质作为竞争优势 随着政府和建筑设备用户对噪声辐射和操作人员舒适性越来越关注,声音品质已经成为建筑设备行业中产品获得竞争优势的主要因素。通常,振动噪声是到产品开发末期才考虑的事情,而这时的实物试验过程中经常会发生意想不到的噪声级问题。因此在产品开发末期,只能确定设计方案,而无法进行大幅度的设计改动。 增加声学内饰和其它吸声材料只能削减一定噪声级,而不能解决噪声来源问题。通过结构修改来解决问题常常会增加不必要的材料和重量,这样容易引起设备其它部件的共振。所以这样修改往往不起作用,并且还会产生很多差错。 迎接全球的挑战 John Deere希望可以找到更有效的方法来减小其产品的噪声辐射。他们寻找新方法可以让工程师在产品开发的早期阶段有效地预测振动和噪声,而在此时,设计也可以更容易的进行优化。他们采用的战略方法就是将可以预测振动噪声的技术引入一个特殊的产品生产线。 Deere公司希望在早期减小噪声辐射的目标产品是滑行转向推土机(skid steer loader),这是一种通用机械,车轮由一组液压电机和每一侧的控制阀来驱动。车轮的方向是固定的,车轮的转向由车辆一侧的液压驱动力来实现,而另一侧车轮制动,并在转向过程中滑行。此设备简单的液压驱动和转向概念使其具有很高的可靠性和通用性。 查明声源 为这种推土机开发预测技术的振动声学工作需要John Deere公司多个部门的工程师和LMS工程服务部门的通力合作,其中LMS提供技术支持服务,帮助建立声学 HYPERLINK /cat_1310002.html \t _blank 仿真流程。 Deere公司选择LMS技术是基于其功能可以满足这些应用的声学需要。LMS Test.Lab具有广泛的试验控制和测量功能,通过其硬件LMS S HYPERLINK /cat_1310001.html \t _blank CADAS II前端系统采集试验数据,并将结果进行分析。这些分析包括对结构噪声进行的传递路径分析(TPA)和对跟踪回到声源的声音路径的空气噪声进行的声源定位分析(ASQ)。LMS Virtual.Lab Noise and Vibration可以提供先进的功能,建立整个系统的仿真模型,将现有部件的试验模型和新设计部件的有限元模型结合起来。基于这个混合模型,LMS Virual.Lab可以预测振动响应和产品配置任意改动后的声级。 John Deere技术中心(Moline,Illinois)高级NVH工程师Loren DeVries说:“使用LMS软件的优势之一就是整个流程可以在单一的环境中进行,这样可以减少由于数据传输和转换而产生的问题。此外,还可以控制整个流程,轻松容易地进行多种分析,研究设计变动的影响,并将流程应用到其它产品生产中。” 声学仿真的四个阶段 KeVries解释说对于推土机来说,流程要经过四个阶段来完成:首先是进行一系列的基本声学试验来识别噪声源;随后进行第二系列试验,量化每一声源的强度并确定声音传递路径;然后建立基于这些试验结果的混合声学模型;最后使用声学仿真模型预测声级,研究设计修改的影响。 对于基本试验来说,先将一系列麦克风安装在正常工况运行的推土机内部和周围,然后用LMS试验和分析系统进行标准的声学测量。分析试验数据可以根据频率识别出主要噪声源,包括来自发动机的第三阶次峰值和来自液压电机和泵的第九、第十三和第十八阶次峰值。除了这些峰值以外,发动机结构、进气/排气,和风扇也对整体的噪声级产生贡献量。 为了对每一噪声源的贡献量进行量化,要进行一系列的试验。这些试验包括进行运行模态试验来测量结构上超过1000个点的工况加速度,用来自激振器的力输入进行试验模态分析,还有对传递到操作者耳中的声源进行互逆频响函数测量。分析这些试验数据可以建立噪声传递的路径:TPA进行结构噪声分析(通过车架、悬置、阀组箱等等),ASQ进行噪声在空气中传递的分析(噪声通常来自发动机
文档评论(0)