- 1、本文档共28页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
SimpleStatisticalGradient-FollowingAlgorithmsfor
Machine Learning, 8, 229-256 (1992)
? 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning
RONALD J. WILLIAMS rjw@corwin.ccs.northeastern.edu
College of Computer Science, 161 CN, Northeastern University, 360 Huntington Ave., Boston, MA 02115
Abstract. This article presents a general class of associative reinforcement learning algorithms for connectionist
networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight
adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement
tasks and certain limited forms of delayed-reinforcement tasks, and they do this without explicitly computing
gradient estimates or even storing information from which such estimates could be computed. Specific examples
of such algorithms are presented, some of which bear a close relationship to certain existing algorithms while
others are novel but potentially interesting in their own right. Also given are results that show how such algorithms
can be naturally integrated with backpropagation. We close with a brief discussion of a number of additional
issues surrounding the use of such algorithms, including what is known about their limiting behaviors as well
as further considerations that might be used to help develop similar but potentially more powerful reinforcement
learning algorithms.
Keywords. Reinforcement learning, connectionist networks, gradient descent, mathematical analysis
1. Introduct ion
The general framework of reinforcement learning encompasses a broad variety of problems
ranging from various forms of function optimization at one extreme to learning control
at the other. While research in these individual areas tends to emphasize different sets of
issues in isolation, it is likely that effective reinforcement learning techniques for autonomous
您可能关注的文档
- 11.4格林公式及其应用(一).pdf
- 1原子量分子量と物質量-api.pdf
- 1覚えたい元素記号と化学式.pdf
- 1.为什么要上物理实验课大学物理实验课程绪论.pdf
- 18000吨年系列防霉杀菌剂、2000吨年水性纺织固色剂、3200吨年冶炼.pdf
- 2012化学発光.pdf
- 2013IntertekChinaKnowledgeCenterTrainingSchedule(Jul.pdf
- --案例分析15年真题解析(四).pdf
- 2014年锡市场分析报告.pdf
- 2015年度面向中国利民工程无偿援助实绩.pdf
- 新高考生物二轮复习讲练测第6讲 遗传的分子基础(检测) (原卷版).docx
- 新高考生物二轮复习讲练测第12讲 生物与环境(检测)(原卷版).docx
- 新高考生物二轮复习讲练测第3讲 酶和ATP(检测)(原卷版).docx
- 新高考生物二轮复习讲练测第9讲 神经调节与体液调节(检测)(原卷版).docx
- 新高考生物二轮复习讲练测第11讲 植物生命活动的调节(讲练)(原卷版).docx
- 新高考生物二轮复习讲练测第8讲 生物的变异、育种与进化(检测)(原卷版).docx
- 新高考生物二轮复习讲练测第5讲 细胞的分裂、分化、衰老和死亡(讲练)(原卷版).docx
- 新高考生物二轮复习讲练测第5讲 细胞的分裂、分化、衰老和死亡(检测)(原卷版).docx
- 新高考生物二轮复习讲练测第12讲 生物与环境(讲练)(原卷版).docx
- 新高考生物二轮复习讲练测第11讲 植物生命活动的调节(检测)(原卷版).docx
文档评论(0)