- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
中图法分类号TP391-中国图象图形学报.doc
中图法分类号: TP391.4 文献标识码:A 文章编号:140628
文章索引信息:王勋,罗婷婷,刘春晓,彭浩宇.对比度、颜色一致性和灰度像素保持的消色算法[J].中国图象图形学报
对比度、颜色一致性和灰度像素保持的消色算法
王勋,罗婷婷,刘春晓,彭浩宇
(浙江工商大学计算机与信息工程学院,浙江 杭州,310018)
摘 要:目的:为了解决目前消色算法中不能同时保持原始图像的对比度,颜色一致性和灰度像素特征的问题,我们提出了一个新的优化算法,最大限度地保留这些特性。保持原始图像的结构和局部信息保持颜色一致性,我们局部线性嵌入确保原始图像中颜色一致的像素在结果图像中拥有一样的灰度级消色变换的过程中始终目标能量函数,迭代使能量值达到最小的灰度值,从而得到了消色结果。我们的算法能够contrast, color consistency and grayscale pixel preservation
Wang Xun, Luo Tingting, Liu Chunxiao, Peng Haoyu
(School of Computer Science Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China)
Abstract: Objective: In theory, color to gray transformation is a process of dimensionality reduction, so losing information is inevitable. Therefore, the goal of decolorization is to use the limited gray level range to preserve as much information of the original color image as possible. Researchers have proposed many related algorithms, but they neither simultaneously preserve local and global contrast better, nor simultaneously preserve contrast, color consistency and grayscale pixel of original image. In order to solving the above problems, we propose a new approach which can maximally maintain these features of original color image. Method: For preserving the structure and local information, we use a bimodal Gaussian distribution, which is followed by the difference between pixel and its neighbors, to construct the error energy function. For global color consistency, we use the locally linear embedding to build energy function which makes the same color pixels have the same gray levels in the result. For grayscale feature preservation, we mark out grayscale pixels and specify that the gray values of grayscale pixels are known quantities and unchanged during conversion firstly. Then we construct the energy function between grayscale pixels and other pixels. After that, we build the objective function by the linear combination of the three energy functions and obtain the gray image via solving the objec
文档评论(0)