04 Improved Fault-Prone Detection Analysis of Software.pdf

04 Improved Fault-Prone Detection Analysis of Software.pdf

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
04 Improved Fault-Prone Detection Analysis of Software

       Vol. 9, No. 4, pp. 421-433, 2012 QTQM ? ICAQM 2012 Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics Liguo Yu1 and Alok Mishra2 1Computer Science and Informatics, Indiana University South Bend, IN, USA 2Department of Computer Software Engineering, Atilim University, Ankara, Turkey (Received November 2011, accepted May 2012) ______________________________________________________________________ Abstract: Complexity metrics have been intensively studied in predicting fault-prone software modules. However, little work is done in studying how to effectively use the complexity metrics and the prediction models under realistic conditions. In this paper, we present a study showing how to utilize the prediction models generated from existing projects to improve the fault detection on other projects. The binary logistic regression method is used in studying publicly available data of five commercial products. Our study shows (1) models generated using more datasets can improve the prediction accuracy but not the recall rate; (2) lowering the cut-off value can improve the recall rate, but the number of false positives will be increased, which will result in higher maintenance effort. We further suggest that in order to improve model prediction efficiency, the selection of source datasets and the determination of cut-off values should be based on specific properties of a project. So far, there are no general rules that have been found and reported to follow. Keywords: Binary logistic regression, complexity metrics, fault-prone software module. ______________________________________________________________________ 1. Introduction oftware quality analysis and prediction focuses on detecting high-risk fault prone program modules, allowing practitioners to allocate project resources strategically [9, 34].Through allocating more testing resources on fault-prone modules, we can

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档