- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Activity recognition via autoregressive prediction of velocity distribution
Activity Recognition via Autoregressive Prediction of Velocity
Distribution
Miha Peternel and Ales? Leonardis
University of Ljubljana
Faculty of Computer and Information Science
Trz?as?ka 25, SI-1001 Ljubljana, Slovenia
{miha.peternel,ales.leonardis}@fri.uni-lj.si
Abstract
We present a novel approach for view-based learning and recognition of motion patterns of articulated
objects. We formulate the intervals of motion as a predictive model of local spatio-temporal receptive
field activation. We compute local velocity distribution using a Bayesian approach, and then approximate
the local velocity distribution in space and time using a set of Gaussian receptive fields. The activation
sequence of receptive fields over time is modeled in a PCA subspace using linear auto-regression to arrive
at a model of the motion pattern. Recognition is performed using the MDL principle. We test the approach
on a number of human motion patterns to demonstrate the applicability of the proposed approach to simple
action recognition and identification.
1 Introduction
The ability to learn and later recognize articulated activities with few assumptions about the object geometry, appear-
ance, and the nature of the activity would have a number of applications in monitoring, video interpretation, video
indexing, smart environments, and human-robot interactions.
Several models have been developed to enable recognition of motion patterns, trajectories, and consequently activ-
ities [7]. Standard methods either use a predefined geometrical model and try to estimate its parameters [8, 1, 2, 11], or
attempt to model the observed motion directly [3, 16, 4, 5]. Recently, attempts have been made to summarize motion
using local spatio-temporal features [14, 12]. It has been shown [12] that distribution density of local trajectories can
be used for learning and recognition of cyclic human motion, however such representation is scale dependent and ap-
plies to cyclic motion only. Fablet et al. [6] have
您可能关注的文档
最近下载
- 高考作文写作:统编版语文必修下册一、二单元课本素材梳理与应用.docx
- 教育家办学中小学校长专业标准解读教学的讲义.ppt VIP
- 2025年天津出租车从业资格区域考试题库.docx VIP
- 2025中级社会工作师《社会工作综合能力》考前通关必练题(附答案).doc VIP
- 人教A版高中数学必修第一册同步教材习题答案.doc VIP
- 2022-2023学年统编版高中语文必修下册课内素材总结.pdf VIP
- 二升三数学暑假作业每日一练(50套50页).pdf VIP
- 2023-2024学年统编版高中语文必修下册课内素材总结.docx VIP
- 2024年锂电池货物运输安全合同.docx VIP
- 员工劳动合同7篇(员工劳动合同范本免费下载).docx VIP
文档评论(0)