Action Recognition.pdfVIP

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Action Recognition

Action Recognition based on Human Movement Characteristics? Radu Dondera, David Doermann and Larry Davis University of Maryland College Park, MD USA {rdondera, lsd@}, {doermann@} Abstract We present a motion descriptor for human action recog- nition where appearance and shape information are unre- liable. Unlike other motion-based approaches, we lever- age image characteristics specific to human movement to achieve better robustness and lower computational cost. Drawing on recent work on motion recognition with bal- listic dynamics, an action is modeled as a series of short correlated linear movements and represented with a proba- bility density function over motion vector data. We are tar- geting common human actions composed of ballistic move- ments, and our descriptor can handle both short actions (e.g. reaching with the hand) and long actions with events at relatively stable time offsets (e.g. walking). The pro- posed descriptor is used for both classification and detec- tion of action instances, in a nearest-neighbor framework. We evaluate the descriptor on the KTH action database and obtain a recognition rate of 90% in a relevant test setting, comparable to the state-of-the-art approaches that use other cues in addition to motion. We also acquired a database of actions with slight occlusion and a human actor manipulating objects of various shapes and appearances. This database makes the use of appearance and shape in- formation problematic, but we obtain a recognition rate of 95%. Our work demonstrates that human movement has distinctive patterns, and that these patterns can be used ef- fectively for action recognition. 1. Introduction Human action recognition is an active field of computer vision research with applications to visual surveillance, hu- man computer interaction and video indexing. One of the main challenges in action recognition is action representa- tion. Previous work has investigated the use of appearance, shape, motion and sequencing informa

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档