- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Bayesian Matrix Factorization with Side Information and Dirichlet Process Mixtures
Bayesian Matrix Factorization with Side Information
and Dirichlet Process Mixtures
Ian Porteous and Arthur Asuncion and Max Welling
Bren School of Information and Computer Science
University of California Irvine
Irvine, CA 92697
{iporteou,asuncion,welling}@
Abstract
Matrix factorization is a fundamental technique in machine
learning that is applicable to collaborative filtering, informa-
tion retrieval and many other areas. In collaborative filtering
and many other tasks, the objective is to fill in missing ele-
ments of a sparse data matrix. One of the biggest challenges
in this case is filling in a column or row of the matrix with
very few observations. In this paper we introduce a Bayesian
matrix factorization model that performs regression against
side information known about the data in addition to the ob-
servations. The side information helps by adding observed
entries to the factored matrices. We also introduce a nonpara-
metric mixture model for the prior of the rows and columns
of the factored matrices that gives a different regularization
for each latent class. Besides providing a richer prior, the
posterior distribution of mixture assignments reveals the la-
tent classes. Using Gibbs sampling for inference, we apply
our model to the Netflix Prize problem of predicting movie
ratings given an incomplete user-movie ratings matrix. In-
corporating rating information with gathered metadata infor-
mation, our Bayesian approach outperforms other matrix fac-
torization techniques even when using fewer dimensions.
Introduction
Matrix factorization is an important technique in machine
learning which has proven to be effective for collaborative
filtering (Koren 2008), information retrieval (Deerwester
et al. 1990), image analysis (Lee and Seung 1999), and
many other areas. A drawback of standard matrix factor-
ization algorithms is that they are susceptible to overfitting
on the training data and require careful tuning of the regu-
larization parameters and the num
您可能关注的文档
- Antioxidant, anti-hyaluronidase and antifungal activities of Melaleuca leucadendron Linn. leaf oils.pdf
- AP Physics equation sheet.pdf
- ap09_frq_calculus_bc_formb.pdf
- An_Introduction_to_Ultra-High_Temperature_Ceramics.pdf
- AP Human Geography practice test.pdf
- ap12_frq_chemistry.pdf
- AP112_75ohm.pdf
- ap09_frq_chemistry_formb.pdf
- API_RP_6AR_REPAIR_OF_WELLHE.pdf
- AP4313 外置恒流调压电路.pdf
最近下载
- 道德发展心理学.pdf VIP
- 福克斯特Scarlett 4i4 3rd Gen用户说明书.pdf
- 部编人教版小学语文5年级下册全册教学课件.pptx
- 人教版二年级口算题1000题大全.pdf
- 2025年高一物理寒假衔接讲练 (人教版)第02讲 小船渡河和关联速度(教师版).docx VIP
- 2025年高一物理寒假衔接讲练 (人教版)第02讲 共点力的平衡(教师版).docx VIP
- 2025年高一物理寒假衔接讲练 (人教版)第03讲 抛体运动的规律(教师版).docx VIP
- 酒店的薪酬管理制度.docx VIP
- 《婴幼儿健康管理实务》课程标准 (1).docx
- 2024年中考数学试题(含答案).doc
文档评论(0)