热管技术在荒煤气余热回收上的应用热管技术在荒煤气余热回收上的应用.doc

热管技术在荒煤气余热回收上的应用热管技术在荒煤气余热回收上的应用.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
热管技术在荒煤气余热回收上的应用热管技术在荒煤气余热回收上的应用

热管技术在荒煤气余热回收上的应用 一、炼焦荒煤气余热利用技术背景。 1、炼焦荒煤气余热利用技术的必要性。 炼焦化学工业是影响国民经济基础的清洁能源转化的流程工业,是炼焦煤通过干馏、实现焦炭和其关联产品的生产工艺模式,属于典型的能源流程产业。焦炭生产过程中,配合煤在焦炉中被隔绝空气加热干馏,生成焦炭的同时产生大量的荒煤气。从炼焦生产过程热平衡分布看,从焦炉炭化室推出的950℃?1050℃ 红焦带出的显热余热占焦炉支出热的37%,650℃?750℃焦炉荒煤气带出热(中温佘热)占焦炉支出热的36%,180℃?230℃焦炉烟道废气带出热(低温余热)占焦炉支出热的16%,炉体表面热损失(低温余热)占焦炉支出热的11%。 炼焦荒煤气余热回收利用的经济效益显著。理论及实验数据表明,每生产1 吨红焦的高温荒煤气余热回收后至少能产生0. 1吨0. 6兆帕蒸汽,当前,我国年产焦炭约35300万吨,如其荒煤气余热全部得到回收利用,则半至少可回收3530万吨0.6兆帕蒸汽,折合标煤约380万吨,年可减排二氧化碳量993万吨,节能潜力巨大。 为实施清洁生产,持续减少资源及能源消耗、减少污染物的产生与排放,焦化行业已成为国家节能降耗方面重点关注行业,面临着巨大的节能减排压力。 2、我国炼焦荒煤气余热利用技术的进程。 目前,焦化行业传统做法是喷洒大量氨水,使荒煤气温度降低,进入后续煤化工产品回收加工工段。这样的结果是,荒煤气带出的热量被白白浪费掉,既流失了荒煤气热能,还增加了水资源的消耗。 炼焦荒煤气余热冋收利用技术在我国经历了近30年的研究历程。上世纪70年代,采用夹套上升管,夹套内冷却水吸收荒煤气所携带的热量而汽化,产生蒸汽,实现热能的回收利用,简称为“焦炉上升管汽化冷却装置”,这一技术曾一度被多家焦化企业釆用,后因上升管的筒体焊缝拉裂、漏水、漏汽等问题,运行几年后基本停用。 后来经过改进,有的企业把冷却水换成了导热油,导热油与高温荒煤气间接换热,被加热的高温导热油用于煤焦油蒸馏、干燥入炉煤、蒸氨等。因导热油稳定性好,运行效果有了较大改善。 用热管回收荒煤气带出热量,效果也不错。将管内水变成蒸汽,沿着热管上升加热管外的水产生蒸汽,单个上升管产蒸汽压力1.6兆帕,平均蒸汽流量66公斤/小时,热管换热后降至500℃。 冷却流程改进。使脱硫贫液与高温荒煤气间接换热,脱硫贫液换热后通过闪蒸装置产生蒸汽,作为脱硫液再生热源,这种工艺可使年产200万吨焦炭企业年节约低压蒸汽26万吨,相当于回收利用了25%荒煤气带出热。 此外,我国焦化工作者还设计了用锅炉回收荒煤气带出热、用半导体温差发电技术回收荒煤气余热等方案和技术。 二、热管技术在荒煤气余热回收上的应用简介。 1、热管回收余热技术。 (1)热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管技术目前已广泛应用于宇航、军工、钢铁、机械等行业。 (2)工作原理:热管是一种新型高效的传热元件,按较精确的定义应称之为“封闭的两相传热系统”,即在一个抽成真空的封闭的体系内,依赖装入内部的流体的相态变化(液态变为汽态和汽态变为液态)来传递热量的装置。热管放在热源部分的称之为蒸发段(热端),放在冷却部分的称之为冷凝段(冷端)。当蒸发段吸热把热量传递给工质后,工质吸热由液体变成汽体,发生相变,吸收汽化潜热。在管内压差作用下,汽体携带潜热由蒸发段流到冷凝段,把热量传递给管外的冷流体,放出凝结潜热,管内工质又由汽体凝为液体,在重力作用下,又回到蒸发段,继续吸热汽化。如此周而复始,将热量不断地由热流体传给冷流体。 (3)热管优点 ①金属、非金属材料本身的导热速率取决于材料的导热系数、温度梯度、正交于温度梯度的截面面积。以金属银为例,其值为415W/m2?K左右,经测定,热管的导热系数是银的几百倍到上千倍,故热管有热超导体之称。 ②由于热管内的传热过程是相变过程,而且工质的纯度很高,因此热管内蒸汽温度基本上保持恒温,经测定:热管两端的温差不超过5℃,与其它传热元件相比,热管具有良好的等温性能。 ③热管能适应的温度范围与热管的具体结构、采用的工作流体及热管的环境工作温度有关。目前,热管能适应的温度范围一般为-200℃~2000℃,这也是其它传热元件所难以达到的。 (4)热管式余热回收装置 ①原理:热管式余热回收装置的核心部件是热管。 基本结构:热管蒸汽发生器是由若干根特殊的热管元件组合而成。热管的受热段置于热流体风道内,热风横掠热管受热段,热管元件的放热段插在水—汽系统内。由于热管的存在使得该水—汽系统的受热及循环完全和热源分离而独立存在于热流体的风

文档评论(0)

zyongwxiaj8 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档