网站大量收购闲置独家精品文档,联系QQ:2885784924

龚志伟数字图像处理.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
龚志伟数字图像处理龚志伟数字图像处理

指导老师:龚志伟 数字图像处理论文 学生:邹灵蓉 中南林业科技大学 本 科 课 程 论 文 学生姓名: 邹灵蓉 学 号: 学  院: 理学院 专业年级: 信息与计算科学二班 课 程: 数字图像处理 设计题目: 基于小波分频与直方图均衡图像增强算法 指导教师: 龚志伟 2012年10月21日 摘要 传统直方图均衡化算法在增强图像的同时也丢失了图像细节、增强了图像的噪声信号,导致信息熵下降。结合小波变换多尺度、多分辨率的特点和直方图均衡的优势,提出一种基于小波分频和直方图均衡的高亮度图像增强算法。首先利用小波变换将图像分解为低频分量和高频分量,然后仅对低频分量做直方图均衡处理,再由均衡后的低频分量与各高频分量进行小波重构。实验结果表明,该算法对于亮度较高的灰度图像有较好的增强效果。 关键词: 图像增强; 小波变换; 小波分频; 直方图均衡 Image Enhancement Algorithm Based on Wavelet Frequency Division Histogram Equalization Abstract: The traditional histogram equalization processing algorithm lost image details and enhanced noise signal while it enhanced image, which led to the descent of information entropy. A high brightness image enhancement algorithm based on wavelet frequency division and histogram equalization is put forward in combination with the characteristics of multi-scale and multi-resolution of wavelet transform and the predominance of histogram equalization. At first, the image is divided into the low frequency part s and the high frequency parts, and histogram equalization processing is only applied to the low frequency parts. Then, the wavelet is reconstituted by the low frequency parts which have been equalized with the original high frequency parts. The experimental results show that this algorithm can enhance image of high brightness effectively. Keywords:image enhancement; wavelet transform; wavelet frequency division; histogram equalization 引言 图像增强技术是一类基本的图像处理技术,是指有选择地突出图像中感兴趣的特征或者抑制图像中某些不需要的特征,其目的是使处理后的图像更适合于人的视觉特性或机器的识别系统,包括图像的轮廓线或者纹理加强、图像去噪、对比度增强等。因此图像增强处理是图像分析和图像理解的前提和基础。在图像的获取过程中,特别是对于多媒体监控系统采集的图像,由于监控场景光线照射复杂、拍摄背景也比较复杂等环境因素的影响。加之摄像设备、传感器等因素引入的噪声,使监控图像在一定程度上存在对比度差、灰度分布范围窄、图像分辨率下降。因此,为得到一幅清晰的图像必须进行增强处理。传统的图像增强算法通常是基于整幅图像的统计量,这样在计算整幅图像的变换时,图像中的低频信息、高频信息以及含有的噪声,同时进行了变换,因而在增强图像的同时增强了噪声,导致信息熵下降,给监控图像的分析和后期处

文档评论(0)

ganqludp + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档