网站大量收购闲置独家精品文档,联系QQ:2885784924

第五章离散选择模型20140429.doc

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第五章离散选择模型20140429

PAGE  PAGE 22 第五章 离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节 模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连??的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例5.1 研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即 我们希望研究买房的可能性,即概率的大小。 例5.2 分析公司员工的跳槽行为。员工是否愿意跳槽到另一家公司,取决于薪资、发展潜力等诸多因素的权衡。员工跳槽的成本与收益是多少,我们无法知道,但我们可以观察到员工是否跳槽,即 例5.3 对某项建议进行投票。建议对投票者的利益影响是无法知道的,但可以观察到投票者的行为只有三种,即 研究投票者投什么票的可能性,即。 从上述被解释变量所取的离散数据看,如果变量只有两个选择,则建立的模型为二元离散选择模型,又称二元型响应模型;如果变量有多于二个的选择,则为多元选择模型。本章主要介绍二元离散选择模型。 离散选择模型起源于Fechner于1860年进行的动物条件二元反射研究。1962年,Warner首次将它应用于经济研究领域,用于研究公共交通工具和私人交通工具的选择问题。70-80年代,离散选择模型被普遍应用于经济布局、企业选点、交通问题、就业问题、购买行为等经济决策领域的研究。模型的估计方法主要发展于20世纪80年代初期。(参见李子奈,高等计量经济学,清华大学出版社,2000年,第155页-第156页) 二、线性概率模型 对于二元选择问题,可以建立如下计量经济模型。 1、线性概率模型的概念 设家庭购买住房的选择主要受到家庭的收入水平,则用如下模型表示 其中,为家庭的收入水平,为家庭购买住房的选择,即 Y01概率1-pp由于是取值为0和1的随机变量,并定义取值为1的概率是p,则的分布为 即随机变量服从两点分布。根据两点分布,可得的数学期望为 显然 从而 (5-1) 上述数学模型的经济学解释是,因为选择购买住房变量取值是1,其概率是p,并且这时对应p的表示是一线性关系,因此,在给定下的条件期望可解释为在给定下,事件(家庭购买住房)将发生的条件概率为,亦即家庭选择购买住房的概率是家庭收入的一个线性函数。我们称这一关系式为线性概率函数。 由于,服从两点分布,所以,的方差为 2、线性概率函数的估计及存在的问题 对线性概率函数直接运用OLS估计,会存在以下困难。 (1)随机误差项的非正态性表现 表明服从两点分布。而在经典计量经济学中,假定服从正态分布。 (2)的异方差性。事实上,根据服从两点分布 概率 则的方差为。表明随着i的变动是一个变量,则的方差不是一个固定常数。 (3)利用加权最小二乘法修正异方差 取权数为 可以证明具有同方差。在具体估计线性概率模型时,用作为p的估计来计算权数的估计。

您可能关注的文档

文档评论(0)

haihang2017 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档