基于K近邻的腧穴配方自动生成算法2013年14期基于K近邻的腧穴配方自动生成算法2013年14期.pdf

基于K近邻的腧穴配方自动生成算法2013年14期基于K近邻的腧穴配方自动生成算法2013年14期.pdf

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于K近邻的腧穴配方自动生成算法2013年14期基于K近邻的腧穴配方自动生成算法2013年14期

254 2013,49(14) Computer Engineering and Applications 计算机工程与应用 基于 K 近邻的腧穴配方自动生成算法 李云松 1,王亚强 1,陈 黎 1,秦湘清 1,于中华 1,黄文静 2 LI Yunsong1, WANG Yaqiang1, CHEN Li1, QIN Xiangqing1, YU Zhonghua1, HUANG Wenjing2 1.四川大学 计算机学院,成都 610065 2.成都中医药大学 针灸推拿学院,成都 610075 1.School of Computer, Sichuan University, Chengdu 610065, China 2.School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China LI Yunsong, WANG Yaqiang, CHEN Li, et al. Automatic acupoint prescription generation based on K-nearest neighbor algorithm. Computer Engineering and Applications, 2013, 49(14):254-259. Abstract:Acupuncture is an important part of Traditional Chinese Medicine(TCM). Using emerging technologies to mine hid- den regularities from acupuncture treatment information can not only help making greater contributions to the citizens’health, but also promote the improvement of modern theoretical system of TCM. Choosing acupoints(namely points)is the key to acu- puncture treatment, but the research on acupoint selection for acupuncture treatment with modern technology is still in its infancy. To generate acupoints prescription automatically, an algorithm based on K-nearest neighbor method is proposed in this paper. Through analyzing K records which are most similar to the target patient’s record from a patient record set, the algorithm auto- matically recommends an acupuncture treatment plan for the patient. According to the characteristics of acupuncture clinical data, normalized symptom names, unigrams and bigrams are adopted as features to calculate the record similarity in this paper. An experi- ment on a clinical acupuncture data set which contains 6267 records is performed to validate the algorithm, and the experimental result shows that using unigrams and bigrams as features are more suitable for the automatic generation of acupoints prescription and its F-measure can achieve respe

您可能关注的文档

文档评论(0)

zyongwxiaj8 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档